							invenergy, LLG - Anegheny County Linery	,									
RBLCID	FACILITY NAME	PERMIT ISSUANCE DATE	PROCESS NAME	PRIMARY FUEL	THROUGHPUT	THROUGHPUT UNIT	PROCESS NOTES	CONTROL METHOD DESCRIPTION	EMISSION LIMIT 1	UNIT	AVG TIME CONDITION	EMISSION LIMIT 2	UNIT	AVG TIME CONDITION	STANDARAD EMISSION LIMIT	UNIT	AVG TIME CONDITION
	ST. CHARLES POWER		SCPS Combined					Selective Catalytic Reduction (SCR) with Dry Low NOx Burners (DLNB) during normal operations; Good Combustion Practices during			HOURLY			ANNUAL.			4-HOUR
LA-0313	STATION	8/31/2016	Cycle Unit 1A	Natural Gas	3625	MMBTU/hr		Startup/Shutdown operations.	26.91	LB/H	MAXIMUM	109.5	1 T/YR	MAXIMUM	15	PPM@15% O2	AVERAGE
			FGCTGHRSG (2				There are 2 combined cycle natural gas-fired combustion turbine generators (CTGs) with best recovery steam generators (HRSG) identified as BUCTGHRSG) & EUCTGHRSG. The the Receiving post PCGTGHRSG. The test boson for fautura and abduedows for each time ishall not exceed 500 loone per 12-min shall n							OPERATING HR DURING			
			Combined Cycle				duct burner for a combined throughput of 4161 MMBTU/H or 8322 MMBTU/H for both	SCR with DLNB (selective catalytic			24-H ROLLING			STARTUP OR			
MI-0423	NDECK NILES, LLC HOLLAND BOARD OF	1/4/2017	CTGs with HRSGs) FGCTGHRSG (2 Combined cycle CTGs with HRSGs; EUCTGHRSG10	Natural gas	8322	MMBTU/H	trains. Two combined cycle natural gas fired combustion turbine generators (CTGs) with heat recovery steam generators (HRSG) (EUCTGHRSG10 & EUCTGHRSG11 in FGCTGHRSG).	reduction with dry low NOx burners)	38.1	LB/H	AVERAGE	284	6 LB/H	SHUTDOWN			
MI-0424	PUBLIC WORKS - EAST 5TH STREET	I 12/5/2016	& EUCTGHRSG11) FGCTGHRSG	Natural gas	554	MMBTU/H, each	recovery steam generators (HISSO) (EUC IGHRNG10 & EUC IGHRNG11 in FUC IGHRNG). The total hours for both units combined for startup and shutdown shall not exceed 635 hours per 12-month rolling time period.	Selective catalytic reduction with dry low NOx burners (SCR with DLNB).	3	PPM AT 15% O2	24-H ROLLING AVG; EACH EU	8.11	8 LB/H	24-H ROLLING AVG; EACH EU	(
	HOLLAND BOARD OF PUBLIC WORKS - EAST 5TH		Startup/Shutdown (2 combined cycle CTGs with HRSGs; EUCTGHRSG10 & DESCRIPTION (2017)	:			Two combined cycle natural gas-fired combustion turbine generators (CTGs) with heat recovery steam generators (ffRSG) (EUCTGHRSG)0 & EUCTGHRSG)1 in FGCTGHRSG). The total hours for both units combined for startup and shutdown shall not exceed 635 hours per 12-month rolling time period.	Selective catalytic reduction with dry low			OPERATING HOUR DURING STARTUP; EACH			OPERATING HOUR DURING SHUTDOWN;			
MI-0424	STREET	12/5/2016	EUCTGHRSG11)	Natural gas	554	MMBTU/H; EACH	This process group is to identify emission limits during startup and shutdown. 3421 MMBTU/H for each turbine and 740 MMBTU/H for each duct burner for a combined	NOx burners (SCR with DLNB).	43.7	LB/H	EU	43.	1 LB/H	EACH EU	(
			FGCTGHRSG (2 Combined Cycle				3421 MMBTUH for each turbine and 740 MMBTUH for each dust burner for a combined throughput of 4161 MMBTUH for 822 MMBTUH for both trains. Two combined-sycle natural gas-fired combustion turbine generators (CTGs) with Heat Recovery Steam Generators (IREG) (EUCTGHRSG) & EUCTGHRSG). The total hours for startup and shudom for each train sall not exceed 500 boss per 12-month fulling time	SCR with DLNB (Selective Catalytic			AT 15%O2; 24-			24-HR ROLL			
*MI-0431	INDECK NILES LLC	6/26/2018	FG-TURB/DB1-3 (3	Natural gas	3421	MMBTU/H	period.	Reduction with Dry Low NOx Burners)	2	PPM	HR ROLL AVG	38.	l LB/H	AVG.	(
*MI-0432	NEW COVERT GENERATING FACILITY	7/30/2018	combined cycle combustion turbine and heat recovery steam generator	Natural gas	1230	MW	Three (3) combined-cycle combustion turbine (CT) heat recovery steam generator (HRSG) trains. Each CT is a natural gas fixed Missubishi model 501G, equipped with dry low NOx combustor and inlet air evaporative cooling. Each HRSG includes a natural gas fixed duet banner with a 254 MMBully heat inque capacity and ad vivo NOx burner.	Good combustion practices, DLN burners and SCR.	2	PPMVD	AT 15%O2; EACH INDIV. CT/HRSG TRAIN	22.	4 LB/H	EACH INDIV. CT/HRSG TRAIN 24-H ROLL AVG	į;		
MI-0432	NEW COVERT GENERATING FACILITY	7/30/2018	FG-TURB/DB1-3 Startup/Shutdown 8 Operations EUCTGHRSG	Natural gas	1230	MW	Three (3) combined-cycle combustion turbine (CT) heat recovery steam generator (HRSG) trains. Each CT is a natural gas fixed Misashishi model 501G, equipped with dry low NOx combustor and inlet air evaporative cooling. Each HRSG includes a natural gas fixed duet barner with a 256 MMBTUH heat inter quenty and a dy low NOx burner. This securatio identifies the emission limits applicable during startup and shutdown operations.	Good combustion practices, DLN burners and SCR.	249	LB/H	EACH CT/HRSG TRAIN;STARTUI /SHUTDOWN	3	0				
	MEC NORTH, LLC AND		EUCTGHRSG (South Plant): A combined cycle natural gas-fired combustion turbine generator with heat recovery steam				A combined-cycle natural gas-fired combustion turbine generator (CTG) with heat recovery stems generator (HRSG) in a 1xl configuration with a stems turbine generator (STG) for a stem	SCR with DLNB (Selective catalytic			AT 15%O2; 24- HR ROLL AVG			24-H ROLL AVG			
*MI-0433	MEC NORTH, LLC AND	629/2018	EUCTGHRSG (North Plant): A combined-cycle natural gas-fired combustion turbine generator with heat recovery steam	Natural gas		MW	with dy tow Nok humer (DLNB), SCR and an oxidation catalyst. Nominal 500 MW electricity production. Turbine rating of 3,000 MMBTUhr (HHV) and HRSG dust burner rating of 755 MMBTUhr (HHV). A combined-cycle natural gas-fired combustion turbine generator (CTG) with heat recovery continued to the control of the streng pentage (HRSG) in a 1-1x continued toward to the streng pentage (FGG) for a nominal 500 MW electricity production. The CTG is a H-class turbine with a rating of 3,000 MMBTUhr (HHV). The HRSG is ingrapped with an antural gas-fred duct burner rated at 755 MMBTUhr (HHV) at ISO conditions to provide beat for additional stem production. The HRSG is not capable of operating independently from the CTG. The CTG/HRSG is equipped with a natural government of the strength of the strengt	reduction with dry low NOx burners). SCR with DLNB (Selective catalytic		PPMV	NOT S.S. AT 15%02; 24-H ROLL AVG; NOT		7 LB/H	24-H ROLL AVO NOT STARTUP/SHUT	;		
*MI-0433	MEC SOUTH LLC	6/29/2018	generator.	Natural gas	500	MW	with dry low NOx burner (DLNB), SCR, and an oxidation catalyst. Two (2) combined-cycle natural gas-fired combustion turbine generators, each with a heat	reduction with Dry Low NOx burners).	2	PPMVD	S.S.	29.	7 LB/H	DOWN (SS)	(+
*MI-0435	BELLE RIVER COMBINED CYCLE POWER PLANT	7/16/2018	FGCTGHRSG (EUCTGHRSG1 & EUCTGHRSG2)	Natural gas	0		recovery steam generator (CTGHRSG). Plant nominal 1,15 MW extrictivity production. Turbines are each rated at 3,658 MMBTU/H and HRSG date burners are each rated at 800 MMBTU/H. The HRSGs are not capable of operating independently from the CTGs.	SCR with DLNB (Selective catalytic reduction with dry low NOx burners).	2	PPMVD	AT 15%O2; 24-H ROLL AVG; EACH UNIT;	28.9	9 LB/H	24-H ROLL AVG EACH UNIT; NOT S.S.	;		
*MI-0435	BELLE RIVER COMBINED CYCLE POWER PLANT	3// (20)/	FGCTGHRSG (EUCTGHRSG1 & amp; EUCTGHRSG2) Startup & amp; 8 Shutdown	Natural			This section is the startup and shatdown emission limits for FGCTGHRSG. Two 3,658 MMBTU/H matural gas-fired combustion turbine generators (CTGs) coupled with heat recovery steam generators (HRSGs). The HRSGs are equipped with natural gas-fired duct-burners need at 800 MMBTU/H to provide hear for additional steam production. The HRSGs	SCR with DLNB (Selective catalytic	200	I.B/H	EACH UNIT; OPERATING HOUR DURING						
-MI-0435	JOHNSONVILLE	7/16/2018	Natural Gas-Fired	Natural gas	0		are not capable of operating independently from the CTGs. Turbine throughput is 1019.7 MMBtuhr when burning natural gas and 1083.7 MMBtuhr	reduction with dry low NOx burners).	262.4		S.S. 30 UNIT- OPERATING-	<u> </u>	DDM GVD @ 1500	15 UNIT- OPERATING-			
TN-0162	JOHNSONVILLE COGENERATION GAINES COUNTY POWER PLANT	4/19/2016 4/28/2017	Combustion Turbine 5 with HRSG Combined Cycle Turbine with Heat Recovery Steam Generator, fired Duct Burners, and Steam Turbine (Generator)	Natural Gas NATURAL		MMBtu/hr MW	when burning No. 2 oil. Duct burner throughput is 319.3 MMBtuhr. Duct burner firing will occur during natural gas combustion only. Four Siemens SCT6-5000FS natural gas fired combustion turbines with HRSGs and Steam	Good combustion design and practices, selective catalytic reduction (SCR) Selective Catalytic Reduction (SCR) and Data Law Mon bower Reduction (SCR) and	2	02	DAY MOVING AVERAGE		PPMVD @ 15% 8 O2	DAY MOVING AVERAGE			
	GREENSVILLE POWER		Generator COMBUSTION TURBINE GENERATOR WITH DUCT- FIRED HEAT RECOVERY STEAM	UAS			Turbine Generators	Dry Low NOx burners		PPMVD							
*VA-0325	STATION	6/17/2016	GENERATORS (3)	natural gas	3227	MMBTU/HR	3227 MMBTU/HR CT with 500 MMBTU/HR Duct Burner, 3 on 1 configuration.	SCR	2	PPMVD	1 HR AVG	(0		(

						1							1				
RBLCID		PERMIT ISSUANCE DATE	PROCESS NAME	PRIMARY	THROUGHPUT	THROUGHPUT UNIT	DRACESS VATES	CONTROL METHOD DESCRIPTION	EMISSION LIMIT 1	UNIT	AVG TIME CONDITION	EMISSION LIMIT 2	UNIT	AVG TIME CONDITION	STANDARAD EMISSION LIMIT	UNIT	AVG TIME CONDITION
RBLCID	FACILII Y NAME	DATE	PROCESS NAME	FUEL	THROUGHPUT	THROUGHPUT UNIT	Nominal 640 mWe	DESCRIPTION	LIMIT I	UNII	CONDITION	LIMIT 2	UNII	CONDITION	EMISSION LIMIT	UNII	CONDITION
	HARRISON COUNTY						All emission limits steady-state and include 1000 mmBtu/hr Duct Burner in operation				1-HOUR						
*WV-0029	POWER PLANT INTERNATIONAL STATION	3/27/2018	GE 7HA.02 Turbine GE LM6000PF-25	Natural Gas	3496.2	mmBtu/hr	Short Term startup and shutdown limits in lb/event given in permit.	Dry-Low NOx Burners, SCR Selective Catalytic Reduction and Dry	32.9	LB/HR	AVERAGE 4-HOUR	156.2	TONS/YEAR			PPM	
AK-0071	POWER PLANT	12/20/2010	Turbines (4)	Natural Gas	59900	hp ISO	Turbine-duct burner pairs exhaust through common stack	Low NOx Combustion		ppmvd	AVERAGE	())	
								Turbines EU IDs 5 through 8 shall be									
								equipped with Selective Catalytic Reduction and Dry Low NOx (SCR and									
								DLN) combustors. SCR is a post-									
								combustion gas treatment technique for									
								reduction of nitric oxide (NO) and nitrogen dioxide (NO2) in the turbine									
								exhaust stream to molecular nitrogen,									
								water, and oxygen. This process is									
								accomplished by using ammonia (NH3) as a reducing agent, and is injected into									
								the flue gas upstream of the catalyst bed.									
								By lowering the activation energy of the									
								NOx decomposition removal efficiency o	ď								
								80 to 90 percent are achievable. DLN combustors utilize multistage premix									
								combustors where the air and fuel is									
								mixed at a lean fuel to air ratio. The excess air in the lean mixture acts as a				1			1		
				1				excess air in the lean mixture acts as a heat sink, which lowers peak combustion			1	1			1		
								temperatures and also ensures a more				1			1		
	DETERMINATION OF COLUMN			1				homogeneous mixture, both resulting in			1	1			1		
AK-0073	INTERNATIONAL STATION POWER PLANT	12/20/2010	Fuel Combustion	Natural Gas	59900	HP	EU IDs 5-8 Combined Cycle Natural Gas-fired Combustion Turbines rated at 59,900 hp (44.7 MW)	greatly reduced NOx formation rates. DLN can reduce emissions by about 60%	.1 .	ppmvd	4-HOUR	"	,			a	
	POWER PLANT BLYTHE ENERGY PROJECT		2 COMBUSTION	NATURAL				SELECTIVE CATALYTIC		T	AT 15% O2, 3-HI	1			<u> </u>		
CA-1144	II OTAY MESA ENERGY	4/25/2007	TURBINES Gas turbine	GAS	170	MW	EACH TURBINE WILL PRODUCE 170 MW	REDUCTION	+	ppmvd	AVG	14.8	lb/hr	-	-	4	
CA-1177	CENTER LLC	7/22/2009	combined cycle	Natural gas	171.7	MW		SCR		ppmvd	1 HOUR	()	
							Source test results:										
CA-1178	APPLIED ENERGY LLC	3/20/2009	Gas turbine	Natural gas			1.45 ppm NOx @ 15% O2 or 2.19 lb/hr <0.22 ppm VOC @15%O2 or <0.12 lb/hr	SCR		nnmad	1 HOUR					a	
C.12-117-0	AT LILD LIGHT LLC	5/20/2007	combined cycle COMBUSTION	Tuturui gus	—		S.L. ppin voc (6) 57/02 or -0.12 form	J.C.K.		- Inpairte	THOOK	—					
			TURBINE #2 (NORMAL														
			OPERATION,								@15% O2, 1-HR						
	VICTORVILLE 2 HYBRID		WITH DUCT	NATURAL							AVG (W/ DUCT			1-HR AVG (W/			
CA-1191	POWER PROJECT	3/11/2010	BURNING) COMBUSTION	GAS	154	MW	154 MW Combined Cycle Combustion Turbine Generator	SCR	+	ppmvd	BURNING)	14.6	PPMVD	DUCT BURNING) (4	
			TURBINE #1														
			(NORMAL														
	VICTORVILLE 2 HYBRID		OPERATION, WITH DUCT	NATURAL							@15% O2, 1-HR AVG (W/ DUCT			1-HR AVG (W/			
CA-1191	POWER PROJECT	3/11/2010	BURNING)	GAS	154	MW	154 MW Combined Cycle Combustion Turbine Generator	SCR		ppmvd	BURNING)	14.6	lb/hr	DUCT BURNING) ()	
			COMBUSTION TURBINE #1														
			(NORMAL														
			OPERATION.														
CA-1192	AVENAL ENERGY PROJECT	6/21/2011	WITH DUCT BURNING)	NATURAL	100	MW		SCR, DRY LOW NOX COMBUSTORS		.l	@15% O2, 1-HR	173	11.4	1-HR AVG		0	
CA-1192	AVENAL ENERGY PROJECT	6/21/2011	COMBUSTION	GAS	100	NW		SCR, DRT LOW NOA COMBUSTORS	<u> </u>	ppmvu	AVG	17.4	10/nr	I-HR AVG	,	+	
			TURBINE #2 (NORMAL														
			OPERATION.														
			WITH DUCT	NATURAL							@15% O2, 1-HR						
CA-1192	AVENAL ENERGY PROJECT	6/21/2011	BURNING) COMBUSTION	GAS	180	MW		SCR, DRY LOW NOX COMBUSTORS	4	ppmvd	AVG	17.2	lb/hr	1-HR AVG		1	
			TURBINE									1			1		
			GENERATOR, 2	L							l	1			1		
CA-1195	ELK HILLS POWER LLC	1/12/2006	units (Normal	NATURAL GAS	166	MW	Each CTG system will generate 166 MW under design ambient conditions with steam power augmentation from the duct burners, and 153 MW without steam augmentation.	SCR OR SCONOX, DRY LOW NOX COMBUSTORS	,.	nomyd	@15% O2, 1-HR AVG	15.8	lb/hr	1-HR AVG		a	
		2.12/2000	COMBUSTION		100		Mari Outros, and 155 Mr. Transa soun augustilation.		1	Trans.	1	13.0		- INCATO	1		
			TURBINE GENERATORS					DRY LOW NOX BURNERS (LNB),				1			1		
	HIGH DESERT POWER		(NORMAL	NATURAL			THREE (3) COMBUSTION TURBINE GENERATORS AT 190 MW EACH AND	SELECTIVE CATALYTIC			@15% O2, 1-HR	1			1		
CA-1209	PROJECT	3/11/2010	OPERATION)	GAS	190	MW	EQUIPPED WITH A 160 MMBTU/HR DUCT BURNER AND HRSG	REDUCTION (SCR)	2.:	ppmvd	AVG	18	lb/hr	1-HR AVG	(1	
			COMBUSTION TURBINES					DRY LOW NOX BURNERS (LNB),				1			1		
	COLUSA GENERATING		(NORMAL	NATURAL			TWO (2) NATURAL GAS FIRED TURBINES AT 172 MW EACH. BOTH TURBINES	SELECTIVE CATALYTIC			@15% O2, 1-HR	1		1-HR ROLLING	1		
CA-1211	STATION	3/11/2011	OPERATION)	GAS	172	MW	EQUIPPED WITH A 688 MMBTU/HR DUCT BURNER AND HRSG. TWO NATURAL GAS-FIRED COMBUSTION TURBINE-GENERATORS (CTGS) RATED	REDUCTION (SCR)	1 -	ppmvd	ROLLING AVG	19.6	lb/hr	AVG	-	4	
			COMBUSTION				AT 154 MEGAWATT (MW, GROSS) EACH, TWO HEAT RECOVERY STEAM					1			1		
			TURBINES				GENERATORS (HRSG), ONE STEAM TURBINE GENERATOR (STG) RATED AT 267	DRY LOW NOX (DLN)				1			1		
CA-1212	PALMDALE HYBRID POWER PROJECT	10/18/2011	(NORMAL OPERATION)	NATURAL	120	MW	MW, AND 251 ACRES OF PARABOLIC SOLAR-THERMAL COLLECTORS WITH ASSOCIATED HEAT-TRANSFER EQUIPMENT	COMBUSTORS, SELECTIVE CATALYTIC REDUCTION (SCR)	1 .	nomed	@15% O2, 1-HR AVG	1 .	J		1 .	a	
CAVILIZ	I O HER I ROJECT	10/18/2011	COMBUSTION	0.10	134		ASSOCIATION TO TRANSPER EQUI MENT	CALLETTIC REDUCTION (SCR)	<u> </u>	- Davieru		1	1		1		
			TURBINES (COMBUSTOR				FOUR (4) NATURAL GAS FIRED COMBINED CYCLE COMBUSTION TURBINES,	1991 MMBTU/HR DRY LOW NOX			1-HR AVG (COMBUSTOR	1			1		
	MOUNTAINVIEW POWER		TUNING	NATURAL			EACH EOUIPPED WITH A 135 MMBTU/HR DUCT BURNER AND HRSG, AND EACH	COMBUSTORS, SELECTIVE			TUNING	1			1		
CA-1213	COMPANY LLC	4/21/2006	PERIODS)	GAS	175.7	MW EA.	RATED AT 175.7 MW	CATALYTIC REDUCTION (SCR)	81	lb/hr	PERIODS)	())	
I			NATURAL-GAS FIRED														
	ROCKY MOUNTAIN		COMBINED-	NATURAL			ONE NEW COMBINED-CYCLE TURBINE IS BEING ADDED TO AN EXISTING					1			1		
CO-0056	ENERGY CENTER, LLC	5/2/2006	CYCLE TURBINE	GAS	300	MW	FACILITY.	LOW NOX BURNERS AND SCR	1	ppmvd	HOURLY MAX	0.013	LB/MMBTU	SEE NOTE	1	3 PPM @ 15% O2	
	PUEBLO AIRPORT		Four combined cycle combution				Three GE, LMS6000 PF, natural gas-fired, combined cycle CTG, rated at 373 MMBtu per	Dry Low NOx (DLN) Combustor and				1		30-DAY	1		
*CO-0073	GENERATING STATION	7/22/2010	turbines	natural gas	373	mmbtu/hr	hour each, based on HHV and one (1) HRSG each with no Duct Burners	Selective Catalytic Reduction (SCR)	:	ppmvd	1-HR AVE	4.1	lb/hr	ROLLING AVE)	

RBLCID	FACILITY NAME	PERMIT ISSUANCE DATE	PROCESS NAME	PRIMARY FUEL	THROUGHPUT	THROUGHPUT UNIT	PROCESS NOTES	CONTROL METHOD DESCRIPTION	EMISSION LIMIT 1	UNIT	AVG TIME CONDITION	EMISSION LIMIT 2	UNIT	AVG TIME CONDITION	STANDARAD EMISSION LIMIT	UNIT	AVG TIME CONDITION
			SIEMENS SGT6-														
			5000F COMBUSTION														
			TURBINE #1 AND														
			#2 (NATURAL GAS FIRED) WITH	1			Four GE 7FA combined cycle turbines, dry low NOx burners and selective catalytic reduction.										
	KLEEN ENERGY SYSTEMS,		445 MMBTU/HR NATURAL GAS	NATURAL			These limits are for each of the 4 turbines individually, while operating with the duct burners on. This permit is a modification to RBLC OH-0252 to remove hourly restrictions on duct	LOW NOX BURNER AND SELECTIVE CATALYTIC			W/OUT DUCT			W/DUCT			
CT-0151	LLC	2/25/2008	DUCT BURNER	GAS	2.1	MMCF/H	burners.	REDUCTION	15.5	lb/hr	BURNER	16.	.2 lb/hr	BURNER	2	PPM @ 15% O2	1-HR BLOCK
							500 MMBTU/hr Gas Turbine (Model: GE LM6000) rated at 52 MW and 155 MMBTU/hr							@ 15% OXYGEN			
	NRG ENERGY CENTER						Heat Recovery Steam Generator rated at 18 MW. The unit is required to operate a certified							BASED ON A 1			
PDE-0023	DOVER	10/31/2012	UNIT 2- KD1	Natural Gas	655	MMBTU/H	CEMS and COMS.	Selective Catalytic Reduction	5.76	lb/hr	1 HR AVERAGE HOURLY AS	2.	5 PPMVD	HOUR AVERAGE 3 HOUR	0		
	GARRISON ENERGY							Low NOx Combustors, Selective			BASELOAD ON			AVERAGE ON			
DE-0024	CENTER	1/30/2013	Unit 1	Natural Gas	2260	million BTUs		Catalytic Reduction	2	ppmvd	NAT. GAS		6 PPMVD	ULSD OIL	0		
							GENERATING CAPACITY: EACH OF THE FOUR GAS TURBINES HAS A NOMINAL GENERATING CAPACITY OF 170 MW FOR GAS FIRING (180 MW FOR GAI FIRING). EACH OF THE FOUR HEAT RECOVERY STEAM GENERATORS (HESCS) PROVIDES STEAM TO THE SHOLE SHEET STEAM TO THE SHOLE STEAM TO THE SHOLE STEAM TO THE AND SHOLE STEAM TO THE AND SHOLE SHEET SHEET SHOULD SHEET SH	NOX EMISSIONS WILL BE REDUCED WITH DRY LOW-NOX (DLN) COMBILISTION TECHNOL OGY FOR									
			170 MW COMBUSTION				AND ULTRA LOW SULPUK (1993) SULPUK) DISTILLATE OIL AS A RESTRICTED ALTERNATE FUEL. EMISSIONS OF ALL POLLUTANTS INCREASE WITH THE FIRING OF OIL. THE APPLICANT REQUESTS 500 HOURS PER YEAR PER GAS TURBINE (OR EQUIVALENT) FOR OIL FIRING.	GAS FIRING AND WATER INJECTION FOR OIL FIRING. IN COMBINATION WITH THESE NOX			24 UB (ALI			STACK TEST			STACK TEST (C
	FPL TURKEY POINT		TURBINE, 4	NATURAL			MODES OF OPERATION: STANDARD NORMAL OPERATION, WITH DUCT	CONTROLS, A SELECTIVE CATALYTIC REDUCTION (SCR)			24-HR (ALL MODES OF			NORMAL			& DUCT
FL-0263	POWER PLANT	2/8/2005	COMBINED	GAS NATURAL	170	MW	BURNER, POWER AUGMENTATION AND PEAKING.	SYSTEM FURTHER REDUC	2	ppmvd	OPERATION)		2 PPMVD	OPERATION	2	PPM @ 15 % O2	BURNER)
FL-0265	HINES POWER BLOCK 4	6/8/2005	CYCLE TURBINE		530	MW		SCR	2.5	ppmvd	NATURAL GAS	1	0 PPMVD	OIL	2.5	PPM @ 15% O2	
-			COMBINED CYCLE														
FL-0285	PROGRESS BARTOW POWER PLANT	1/26/2007	COMBUSTION TURBINE SYSTEM (4-ON-1)	NATURAL GAS	1972	MMBTU/H	1876 MMBTU/HR WHEN FIRING DISTILLATE FUEL OIL. THE SYSTEM NOMINAL CAPACITY 1280 MW. EACH UNIT NOMINAL CAPACITY 215 MW (ISO) WITH DUCT-FIRED HEAT RECOVERY STEAM GENERATOR. 2177 MMBTU/HR FUEL OIL.	WATER INJECTION	15	ppmvd	30-DAYS BASIS NATURAL GAS	. 4	12 PPMVD	30-DAYS BASIS - DISTILLATE FUEL OIL	0		
			COMBINED CYCLE COMBUSTION				EACH COMBINED CYCLE UNIT SYSTEM (TWO «,« Alaquo; Alaquo, Alaquo; WILL CONSIST OF: THERE NOMINAL 250 MEGAWATT MODEL 501G GAS TURBINE-ELECTRICAL GENERATOR SETS WITH EVPORATIVE NUEL TOOLING SYSTEMS, THERE SUPPLEMENTARY-FIRED HEAT RECOVERY STEAM GENERATORS, (HISRAĞ, S), WITH SER REACTORS; ONE NOMINAL 428 MMBTUHOUR (LHV) GAS-FIRED DUCT BURNER LOCATED WITHIN EACH OF THE THERE HISRAĞ, ST. RITREE 1 HYBEGE TERHALDS TAKES, ONE 26 CELL THE METHERE HISRAĞ, ST. RITREE 1 HYBEGE TERHALDS TAKES, ONE 26 CELL TOOL THE THERE HISRAĞ, ST. RITREE 1 HYBEGE TERHALDS TAKES, ONE 26 CELL TOOL THE THERE HISRAĞ, ST. RITREE 1 HYBEGE TERHALDS TAKES, ONE 26 CELL TOOL THE THERE HISRAĞ, ST. RITREE 1 HYBEGE TERHALDS TAKES, ONE 26 CELL TOOL THE THERE HISRAĞ, ST. RITREE 1 HYBEGE TERHALDS TAKES, ONE 26 CELL TOOL THE THERE HISRAĞ, ST. RITREE 1 HYBEGE TERHALDS TAKES, ONE 26 CELL THE										
FL-0286	FPL WEST COUNTY ENERGY CENTER	1.10.000	GAS TURBINES -	NATURAL		MMBTU/H	MECHANICAL DRAFT COOLING TOWER; AND A COMMON NOMINAL 500 MW	DRY LOW NOX AND SCR WATER INJECTION			24-HR (GAS)		8 PPMVD	24-HR (OIL)			
L-0286	ENERGY CENTER	1/10/200	6 UNIIS	GAS	2353	MMB1U/H	STEAM-ELECTRICAL GENERATOR. FUELHEAT INPUT RATE (LHV): OIL2,117 MMBTU/H	WATER INJECTION		ppmvd	24-HR (GAS)		SPPMVD	24-HR (OIL)	0		
FL-0303	FPL WEST COUNTY ENERGY CENTER UNIT 3	7/30/2008	THREE NOMINAL 250 MW CTG (EACH) WITH SUPPLEMENTAR 3 Y-FIRED HRSG	NATURAL GAS	2333	MMBTU/H	COMBINED CYCLE UNIT 3 WILL CONSIST OF: THREE MOMINAL 250 MW COMBISTION TURRINE-ELECTREAC, GENERATORS (CTO) WITH EVAPORATIVE INLET COOLING SYSTEMS, THREE SUPPLEMENTARY-FIRED HEAT RECOVERY STEAM GENERATORS (HIRSG) WITH SELECTIVE CATALYTIC REDUCTION (SCR) REACTORS AND A COMMON NOMINAL 500 MW STEAM-ELECTRICAL GENERATOR.	DRY LOW NOX SELECTIVE CATALYST REDUCTION	,	romed	24 HOURS		8 PPMVD	24 HOURS			
L-0303	ENERGY CENTER ONLY	7/30/2008	300 MW	UAS	2333	MINIDICAL	UEVERATOR.	SELECTIVE CATALIST REDUCTION		ppinva	24 1100 K3		SITMVD	24110013			
			COMBINED CYCLE														
	CANE ISLAND POWER		COMBUSTION	NATURAL													
FL-0304	PARK	9/8/2008	TURBINE	GAS	1860	MMBTU/H	Basis for the emission standard is either NSPS Subpart KKKK or Department BACT	SCR	2	ppmvd	24-HR		0	-	0		
							determinations. The BACT emission standards for NOX while operating in combined cycle are more stringent than the corresponding Subpart KKKK emissions standards of 15 and 42 ppmvd @15% O2 on				24-HR BLOCK			24-HR BLOCK			
FL-0337	POLK POWER STATION	10/14/2012	Combine cycle power block (4 on 1) COMBINED	natural gas	1160	MW	a 30-day rolling average for natural gas and fuel oil, respectively.	SCR/DLN	2	ppmvd	(GAS) CEMS		8 PPMVD	(OIL) CEMS	0		
			COMBINED CYCLE COMBUSTION TURBINE - ELECTRIC					DRY LOW NOx BURNERS,			3 HOUR			12 CONSECUTIVE MONTH			
			GENERATING	NATURAL				SELECTIVE CATALYTIC			AVERAGE/CONI)		AVERAGE/COND			
GA-0138	LIVE OAKS POWER PLANT	4/8/2010	PLANT COMBUSTION	GAS	600	MW		REDUCTION SELECTIVE CATALYTIC	2.5	ppmvd	ITION 2.11	8	7 T/YR	ITION 2	0	1	
			TURBINE,					REDUCTION (SCR),									
	LANGLEY GULCH POWER		COMBINED CYCLE W/ DUCT	NATURAL			SIEMENS SGT6-5000F COMBUSTION TURBINE (NGCT, CCGT) FOR ELECTRICAL	DRY LOW NOX (DLN), GOOD COMBUSTION PRACTICES			3-HR ROLLING /			3-HR ROLLING / 15% O2 DURING			
D-0018	PLANT	6/25/2010	BURNER	GAS (ONLY)	2375.28	MMBTU/H	GENERATION, NOMINAL 269 MW AND 2.1466 MMSCF/HR	(GCP)	2	ppmvd	15% O2	9	6 PPMVD	SU/SD/LL	0		
											HOURLY AVG EXCEPT						
			Electric Generation				Two combined cycle combustion turbines followed by HRSGs with capability for supplemental				DURING SSM OF	1					
PIL-0112	NELSON ENERGY CENTER	12/28/2010	Facility	Natural Gas	220	MW each	fuel firing in HRSG for each combustion turbine using duct burners. EACH TURBINE IS EQUIPED WITH DRY LOW NOX BURNERS, NATURAL GAS	SCR and Low-NOx Combustors	4.5	ppmvd	TUNING		ð .	+	0		
	ST. JOSEPH ENEGRY		FOUR (4) NATURAL GAS COMBINED CYCLE COMBUSTION	NATURAL			FIRED DUCT BURNERS, AND A HEAT RECOVERY STEAM GENERATOR DEDNTHEID AS HRSG#. NOX EMISSIONS CONTROLLED BY SELECTIVE CATALYTIC REDUCTION SYSTEMS (SCR#) ALONG WITH CO AND VOC EMISSIONS CONTROLLED BY OXIDATION CATAYLIST SYSTEMS (CAT#) IN EACH TURBUE. EACH STACK HAS CONTROLOS EMISSIONS MONTIORS FOR	SELECTIVE CATALYTIC REDUCTION AND DRY LOW NOX									
IN-0158	CENTER, LLC	12/3/2012	TURBINES	GAS	2300	MMBTU/H	NOX AND CO. COMBINED NOMIAL POWER OUTPUT IS 1.350 MW.	BURNERS	2	ppmvd	3 HOURS HOURLY		0	HOURLY	0	1	
114-0136			(4) GAS				VISUAL INSPECTION FOR OPACITY ON A WEEKLY BASIS, STACK	DRY LOW NOX BURNERS,			MAXIMUM -			MAXIMUM -			
10-0136		1	TURBINES/DUCT	NATURAL	2076	MMBTU/H	TESTS FOR PM, NOX, SO2, OPACITY, CO EMISSION POINTS GT-500, -600, -700, -800.	SELECTIVE CATALYTIC REDUCTION	240	llh/hr	NORMAL OPERATION	40	O Ilh Aus	STARTUPS / SHUTDOWNS		PPMVD @ 15%	ANNUAL AVERAGE
	PLAQUEMINE COGENERATION FACILITY	7/22/2009	RIBNERS														A CONTROL
LA-0136	PLAQUEMINE COGENERATION FACILITY	7/23/2008	BURNERS	GAS	28/6	MMB10/H	EMISSION FORM S G1-500, -000, -100, -800.	LOW NOX BURNERS AND	240				O IOIE			02	
	COGENERATION FACILITY	7/23/2008	GAS TURBINES -	GAS		MMBTU/H	LMISSION FORVES (11-200, 4000, 7100, 4000.	LOW NOX BURNERS AND SELECTIVE CATLYTIC REDUCTION (SCR) ADD-ON CONTROLS	21.8	lb/hr	HOURLY MAXIMUM	05	.5 T/YR	ANNUAL MAXIMUM	3	PPM	ANNUAL AVERAGE
LA-0136				NATURAL.			CTG-I TURRINF/M/CT RURNER (FOT012)	LOW NOX BURNERS AND SELECTIVE CATLYTIC REDUCTION	21.8	lb/hr	HOURLY	95.	5 T/YR	ANNUAL	3	PPM	ANNUAL AVERAGE

				1													
RBLCID	FACILITY NAME	PERMIT ISSUANCE DATE	PROCESS NAME	PRIMARY FUEL	THROUGHPUT	THROUGHPUT UNIT	PROCESS NOTES	CONTROL METHOD DESCRIPTION	EMISSION LIMIT 1	UNIT	AVG TIME CONDITION	EMISSION LIMIT 2	UNIT	AVG TIME CONDITION	STANDARAD EMISSION LIMIT	UNIT	AVG TIME CONDITION
			Combined Cycle						i								
	SABINE PASS LNG		Refrigeration Compressor								HOURLY						
LA-0257	TERMINAL	12/6/201	l Turbines (8)	natural gas	286	MMBTU/H	GE LM2500+G4 TWO GENERAL ELECTRIC (GE) F-CLASS ADVANCED COMBINED CYCLE	water injection	22.94	lb/hr	MAXIMUM)		20	PPMV	AT 15% O2
			2 COMBINED-				COMBUSTION TURBINES (CTS) WITH A NOMINAL GENERATING CAPACITY OF				3-HOUR BLOCK			3-HOUR BLOCK	.		
			CYCLE COMBUSTION	NATURAL			725 MW, COUPLED WITH A HEAT RECOVERY STEAM GENERATOR (HRSG) EOUIPPED WITH DUCT BURNERS, DRY LOW-NOX BURNERS, SCR. OXIDATION	DRY LOW-NOX COMBUSTOR DESIGN AND SELECTIVE			AVERAGE, EXCLUDING			AVERAGE, EXCLUDING			
*MD-0041	CPV ST. CHARLES	4/23/201	4 TURBINES	GAS	725	MEGAWATT	CATALYST	CATALYTIC REDUCTION (SCR)	2	ppmvd	SU/SD	21.1	7 lb/hr	SU/SD	(,	
			2 COMBINED				TWO MITSUBISHI ' ' G' MODEL COMBUSTION TURBINE	USE OF DRY LOW-NOX									
			CYCLE				GENERATORS (CTS) WITH A NOMINAL GENERATING CAPACITY OF 270 MW	COMBUSTOR TURBINE DESIGN ,			3-HOUR BLOCK						
	WILDCAT POINT		COMBUSTION TURBINES, WITH	NATURAL			CAPACITY EACH, COUPLED WITH A HEAT RECOVERY STEAM GENERATOR (HRSG) EOUIPPED WITH DUCT BURNERS, DRY LOW-NOX COMBUSTORS.	USE OF PIPELINE QUALITY NATURAL GAS DURING NORMAL			AVERAGE, EXCLUDING			FOR ALL			
*MD-0042	GENERATION FACILITY	4/8/201		GAS	1000	MW	SELECTIVE CATALYTIC REDUCTION (SCR), OXIDATION CATALYST	OPERATION AND SCR SYSTEM	2	ppmvd	SU/SD	870	LB/EVENT	STARTUPS	()	
							EACH TURBINE IS EQUIPPED WITH A HEAT RECOVERY STEAM GENERATOR (HRSG). EACH HRSG IS EQUIPPED WITH A NATURAL GAS FIRED DUCT BURNER										
			3 COMBUSTION TURBINES AND	NATURAL			(650 MMBTU/H). TOTAL NOMINAL PLAN GENERATING CAPACITY WITHOUT DLCT FIRING IS 800 MW. A MAX OLITPLIT OF 1100 MW. THROUGH	DRY LOW NOX BURNERS AND SELECTIVE CATALYTIC			24-HOUR ROLLING AVG			ALL TURBINES			
MI-0366	BERRIEN ENERGY, LLC	4/13/200	5 DUCT BURNERS	GAS	1584	MMBTU/H	SUPPLEMENTAL FIRING OF HRSGS.	REDUCTION.	2.5	pomyd	EACH HOUR	239.4	T/YR	COMBINED	2.5	PPM @ 15% O2	
			Combined cycle				This is a combined-cycle combustion turbine with a non-fired heat recovery steam generator (HRSG).										
			combustion turbine								24-HR ROLLING			24-HR ROLLING			
*MI-0402	SUMPTER POWER PLANT	11/17/201	l w/ HRSG	Natural gas	130	MW electrical output	Natural gas-fired combustion turbine conversion to combined-cycle. Throughput is 2,237 MMBTU/H for each CTG	Low NOx burners	9	ppmvd	AVERAGE	36.9	lb/hr	AVERAGE	()	
			l														
			Natural gas fueled combined cycle				Equipment is permitted as following flexible group (FG): FG-CTG1-2: Two natural gas fired CTGs with each turbine containing a heat recovery steam										
			combustion turbine				generator (HRSG) to operate in combined cycle. The two CTGs (with HRSG) are connected										
*MI-0405	MIDLAND COGENERATION VENTURE		generators (CTG) 3 with HRSG	Natural gas	2237	MMBTU/H	to one steam turbine generator. Each CTG is equpped with a dry low NOx (DLN) burner and a selective catalytic reduction (SCR) system.	Dry low NOx (DLN) burner and selective catalytic reduction (SCR) system.	2	pomyd	EACH CTG; 24-H ROLLING AVG.	16.3	2 lb/hr	EACH CTG; 24-F ROLLING AVG.	1	,	
							This process is permitted in a flexible group format, identified in the permit as FG-CTG/DB1-2			,,,,,,,							
							and is for two natural gas fired CTGs with each turbine containing a heat recovery steam										
			Natural gas fueled combined cycle				generator (HRSG) to operate in combined cycle. The two CTGs (with HRSG) are connected to one steam turbine generator. Each CTG is equipped with a dry low NOx (DLN) burner and										
			combustion turbine				a selective catalytic reduction (SCR) system. Additionally, the HRSG is operating with a										
	MIDLAND COGENERATION		generators (CTG) with HRSG and duc				natural gas fired duct burner for supplemental firing.	Dry low NOx (DLN) burners and selective catalytic reduction (SCR)			24-H ROLLING			24-H ROLLING			
*MI-0405	VENTURE	4/23/201		Natural gas	2486	MMBTU/H	The throughput is 2,486 MMBTU/H for each CTG/DB. Natural gas fired CTG with DB for HRSG; 4 total.	system.	2	ppmvd	AVG	1:	8 lb/hr	AVG	()	
							Technology A (4 total) is 2587 MMBTU/H design heat input each CTG.										
							Technology B (4 total) is 2688 MMBTU/H design heat input each CTG.										
							Permit was issued for either of two F Class turbine technologies with slight variations in										
							emission rates. Applicant will select one technology. Installation is two separate CTG/HRSG										
	THETEORD GENERATING		FGCCA or FGCCB- 4 nat. gas fired CTG			MMBTU/H heat input,	trains driving one steam turbine electrical generator; Two 2X1 Blocks. Each CTG will be rated at 211 to 230 MW (gross) output and the station nominal generating capacity will be up	Low NOx burners and selective catalytic			24-H ROLLING						
*MI-0410	STATION	7/25/201	3 w/ DB for HRSG	natural gas	2587	each CTG	to 1,400 MW.	reduction.	3	ppmvd	AVERAGE	761	lb/hr	1-H AVERAGE	()	
			COMBINED														
			CYCLE				COMBUSTION TURBINE PERMITTED TO USE NG & NO. 2 OIL: DUCT BURNER	DRY LOW NOX COMBUSTION FOR NG: WATER INJECTION FOR NO.2			3-HR AVG CTG			3-HR. AVG CTG			
			TURBINE	NATURAL			PERMITTED TO USE NG & NO. 2 OIL. DUCT BURNER ALSO AUTHORIZED TO	OIL; SCR W/NHZ INJECTION IN			& DB NAT. GAS			FUEL OR NO			3-HR. AVG CTG
MN-0071	FAIRBAULT ENERGY PARK	6/5/200	7 W/DUCT BURNER	GAS	1758	MMBTU/H	COMBUST LIQUID BIOFUEL. Each of these units have a natural gas-fired heat recovery	HRSG FOR BOTH NG & NO. 2 OIL.	3	ppmvd	OR DB NO OPE		PPMVD	OPE	4.5	PPMVD	NG, DB OIL
							steam generator and a natural gas-fired duct burner. Each										
							CT combusts natural gas as the primary fuel and very low- sulfur No. 2 fuel oil as a backup fuel. The use of fuel										
			TURBINE,				oil is limited to 1,200 hours per year and only during the				24 HOUR			24 HOUR			
			COMBINED CYCLE.				months of November through March, and is listed as a separate process. These units are listed	DRY LOW-NOX COMBUSTORS AND	.		ROLLING AVERAGE.			ROLLING AVERAGE.			
			NATURAL GAS,	NATURAL			as a combined source (all three units) for each type of	SELECTIVE CATALYTIC			FIRST 500			AFTER 500			
NC-0101	FORSYTH ENERGY PLANT	9/29/200	5 (3) TURBINE,	GAS	1844.3	MMBTU/H	fuel.	REDUCTION (SCR) SELECTIVE CATALYTIC	2.5	ppmvd	HOURS		PPMVD	HOURS	3	PPM @ 15% O2	
NJ-0074	WEST DEPTEOD DEVELOW	5/6/200	COMBINED	NATURAL	1720	MMFT3/YR		REDUCTION (SCR) AND WATER INJECTION		LB/MMRTU	3 HR ROLLING AVERAGE	l .	PPMVD	3 HR ROLLING AVERAGE			
NJ-00 /4	WEST DEPTFORD ENERGY	5/6/200	COMBINED	UAS	17298	PININT 13/1K		INDECTION	0.01	LD/MMB1U	AVERAGE		FINIVID	AVERAGE	1		
			CYCLE COMBUSTION	1			Natural Gas Usage <= 33,691 MMfh^3/yr per 365 consecutive day period, rolling one				3-HR ROLLING						
	PSEG FOSSIL LLC		TURBINE WITH	1			day basis (per two Siemens turbines and two associated duct burners)				AVE BASED ON			AVERAGE OF			
*NJ-0081	SEWAREN GENERATING STATION	3/7/201	DUCT BURNER -	Natural Gas	33691	MMCUBIC FT PER YEAR	The heat input rate of the Siemens turbine will be 2,356 MMBtu/hr(HHV) with a 62.1 duct burner MMBtu/hr(HHV).	Selective Catalytic Reduction System (SCR)	١,	nomed	1-HR BLOCK AVE	19	S lb/hr	THREE ONE HOUR TESTS			
16 0001	DITTIES.	3/7/201	COMBINED	Tutturur Cus	3307	TEST		(JCAC)		рушти	3112	12	, tom	INCONTENTO	,		
			CYCLE COMBUSTION				Natural Gas Usage <= 33,691 MMfh^3/yr per 365 consecutive day period, rolling one										
	PSEG FOSSIL LLC		TURBINE WITH DUCT BURNER -				day basis (per two turbines and two duct burners)				3-HR BLOCK AVERAGE			AVERAGE OF			
	SEWAREN GENERATING		GENERAL				The heat input rate of each General Electric combustion each turbine will be 2,312	Selective Catalytic Reduction			BASED ON 1-HR			THREE ONE			
*NJ-0081	STATION	3/7/201	4 ELECTRIC	Natural gas	33691	MMCUF/year.	MMBtu/hr(HHV) with a 164.4 MMBtu/hr duct burner This is a 427 MW Siemens Combined Cycle Turbine with duct burner	Systems(SCR) and Dry Low NOx	2	ppmvd	BLOCK	18.	l lb/hr	HOUR TESTS	(
			L				Heat Input rate of the turbine = 2276 MMbtu/hr (HHV)	L									
	WEST DEPTFORD ENERGY		Combined Cycle Combustion Turbine				Heat Input rate of the Duct burner= 777 MMbtu/hr(HHV)	Selective Catalytic Reduction System (SCR) and use of natural gas a clean			3-HR ROLLING AVE BASED ON			3-HR ROLLING AVE BASED ON			
*NJ-0082	STATION		4 without Duct Burner	Natural Gas	20282	MMCF/YR	The fuel use of 20,282 MMCF/YR is for three turbines and three Duct burner. This is a 427 MW Siemens Combined Cycle Turbine with duct burner	burning fuel	2	ppmvd	1-HR BLOCK	17.3	lb/hr	1-HR BLOCK	(
			1				Heat Input rate of the turbine = 2276 MMbtu/hr (HHV)										
	WEST DEPTFORD ENERGY		Combined Cycle Combustion Turbine				Heat Input rate of the Duct burner= 777 MMbtu/hr(HHV)	Selective Catalytic reduction (SCR) and			3-HR ROLLING AVE BASED ON			3-HR ROLLING AVE BASED ON			
*NJ-0082	STATION	7/18/201	4 with Duct Burner	Natural Gas	20282	MMCF/YR	The fuel use of 20,282 MMCF/YR is for three turbines and three Duct burners.	use of natural gas a clean burning fuel	23	lb/hr	1-HR BLOCK		PPMVD	1-HR BLOCK	(
NY-0095	CAITHNES BELLPORT ENERGY CENTER	5/10/200	COMBUSTION 6 TURBINE	NATURAL GAS	2221	MMBUT/H	COMBINED CYCLE WITH DUCT FIRING UP TO 494 MMBTU/H	SCR	ļ ,	ppmvd			_				
*0073	LONGOT CHATEK	3/10/200	oj i okbist	Inde	1 2221	paractin	COMBRED CYCLE WITH DOCT FIXING OF TO 474 MINIDION	per		Hannan	1	· '	1		1 (9	

RBLCID	FACILITY NAME	PERMIT ISSUANCE DATE	PROCESS NAME	PRIMARY FUEL	THROUGHPUT	THROUGHPUT UN	T PROCESS NOTES	CONTROL METHOD DESCRIPTION	EMISSION LIMIT 1	UNIT	AVG TIME CONDITION	EMISSION LIMIT 2	UNIT	AVG TIME CONDITION	STANDARAD EMISSION LIMIT	UNIT	AVG TIME CONDITION
								THE TURBINES EMPLOY DRY LOW									
							THE FACILITY CONSISTS OF 3 WESTINGHOUSE MODEL 501G GAS COMBINED	NOX TECHNOLOGY AND NORMALLY OPERATE ON GAS.			1					1	
				1			CYCLE TURBINES (245 MW BASE LOAD), HEAT RECOVERY STEAM	NOX EMISSIONS ARE			1					1	
							GENERATORS, AND STEAM TURBINE GENERATORS (115 MW) WITH SELECTIVE	ADDITIONALLY CONTROLLED BY									
	ATHENS GENERATING		FUEL COMBUSTION	NATURAL			CATYALYTIC REDUCTION (SCR.) FOR NOX EMISSION CONTROL. NOX EMISSIONS FROM THE TURBINES ARE ADDITIONALLY CONTROLLED BY AMMONIUM	SELECTIVE CAT ALYTIC REDUCTION WITH AMMONIUM			3 HOUR BLOCK AVAEAGE/STEA			3 HOUR BLOCK AVAEAGE/STEA	.1	PPMVD @ 15%	3 HOUR BLOCK AVAEAGE/STEA
NY-0098	PLANT	1/19/2007	(GAS)	GAS	310	MMBTU/H	FROM THE TURBINES ARE ADDITIONALLY CONTROLLED BY AMMONIUM HYDROXIDE INJECTION.	HYDROXIDE INJECTION.		nomyd	DY STATE	23.	4 lb/hr	DY STATE	'	PPMVD @ 15%	DY STATE
		1/19/200			3100		1401	DRY LOW NOX COMBUSTION	1 '	1,,,,,,,,		233				1	
			FUEL COMBUSTION	NATURAL				TECHNOLOGY IN COMBINATION WITH SELECTIVE CATALYTIC			3-HOUR BLOCK AVE./ STEADY			3-HOUR BLOCK AVE / STEADY	1	PPMVD AT 15%	3-HOUR BLOCK AVE / STEADY
NY-0100	EMPIRE POWER PLANT	6/23/2005	(NATURAL GAS)	GAS	209	MMBTU/H		REDUCTION (SCR) SYSTEM		pomyd	STATE	14.5	9 lb/hr	STATE		2 O2	STATE
			FUEL					DRY LOW NOX COMBUSTION									
			COMBUSTION (NATURAL GAS)	NATURAL				TECHNOLOGY IN COMBINATION WITH SELECTIVE CATALYTIC			3-HOUR BLOCK AVE./ STEADY			3-HOUR BLOCK AVE/STEADY		PPMVD AT 15%	3-HOUR BLOCK AVE / STEADY
NY-0100	EMPIRE POWER PLANT	6/23/2005	DUCT BURNING	GAS	64	6 MMBTU/H		REDUCTION (SCR) SYSTEM	-	nnmvd	STATE	28	9 lb/hr	STATE		3 O2	STATE
	Limiterowskieski	0/25/2003		0.15		J. IMMIDT COTT	Two Siemens 2932 MMBtu/H combined cycle combustion turbines, both with 300 MMBtu/H	REDUCTION (BER/BTEM		pomru	J.III.	20.	7 10111	J.M.L.			DIMIL
			2 Combined Cycle Combustion				duct burners, with dry low NOx combustors, SCR, and catalytic oxidizer. Will install either 2 Siemens or 2Mitsubishi, not both (not determined).	selective catalytic reduction (SCR); dry									
	OREGON CLEAN ENERGY		Turbines-Siemens.				Short term limits are different with and without duct burners.	low NOx combustors; lean fuel						PER ROLLING 1:	2.		PPMVD AT 15%
*OH-0352	CENTER	6/18/2013	with duct burners	Natural Gas	5156	0 MMSCF/rolling 12-M	This process with duct burners. Two Mitsubishi 2932 MMBtu/H combined cycle combustion turbines , both with 300	technology	21	lb/hr		9	2 T/YR	MONTHS		2 PPM	O2
			2 Combined Cycle				Two Mitsubishi 2932 MMBtu/H combined cycle combustion turbines, both with 300										
			Combustion Cycle				MMBtu/H duct burners, with dry low NOx combustors, SCR, and catalytic oxidizer. Will install either 2 Siemens or 2Mitsubishi, not both (not determined).	selective catalytic reduction (SCR); dry									
	OREGON CLEAN ENERGY		Turbines-Mitsubishi,	,			Short term limits are different with and without duct burners.	low NOx combustors; lean fuel						PER ROLLING 1:	2.		PPMVD AT 15%
*OH-0352	CENTER	6/18/2013	with duct burners	Natural Gas	4791	7 MMSCF/rolling 12-M	This process with duct burners.	technology	20.8	lb/hr		94.	8 T/YR	MONTHS		2 PPM	O2
			Turbines (4) (model				Four GE 7FA combined cycle turbines, dry low NOx burners and selective catalytic reduction. These limits are for each of the 4 turbines individually, while operating with the duct burners			1		1				1	PPMVD AT 15% O2 ON 3-H
	DUKE ENERGY HANGING		GE 7FA) Duct	NATURAL			on. This permit is a modification to RBLC OH-0252 to remove hourly restrictions on duct	Dry Low NOx burners and Selective			1			PER ROLLING 1:	2	1	BLOCK
*OH-0356	ROCK ENERGY	12/18/2012	Burners On	GAS	17:	2 MW	burners.	Catalytic Reduction	27.6	lb/hr		120.	9 T/YR	MONTHS		3 PPM	AVERAGE
	LAWTON ENERGY COGEN		COMBUSTION TURBINE AND					SCR W/ DRY LOW NOX BURNERS									
OK-0115	LAWTON ENERGY COGEN FACILITY	12/12/2006	TURBINE AND DUCT BURNER					SCR W/ DRY LOW NOX BURNERS AND DRY LOW NOX COMBUSTION	1 24	nomyd	@15% O2	1 .	0		1 .	0	
	PSO SOUTHWESTERN		GAS-FIRED						1 3	- Ingalivu	(m) 23 /0 OZ						
OK-0117	POWER PLT	2/9/2007	TURBINES					DRY LOW NOX	1 9	ppmvd		1	0		1	0	1
			COMBINED CYCLE							1		1				1	
			COGENERATION	NATURAL							1-H AVG @ 15%					1	
OK-0129	CHOUTEAU POWER PLANT	1/23/2009	>25MW COMBUSTION	GAS	188	MMBTU/H	SIEMENS V84.3A	SCR AND DRY LOW-NOX	1 2	ppmvd	02	15.2	5 lb/hr	1-H AVG	1	0	
			COMBUSTION TURBINE & amp;				GE 7241FA TURBINE AND DUCT BURNER.										
			TURBINE & amp; HEAT RECOVERY				GE /241FA LORBINE AND DUCT BURNER.				1					1	
			STEAM	NATURAL			COMBUSTION TURBINE - 1,778.5 MMBTU/HR			1		1				1	
OR-0041	WANAPA ENERGY CENTER	8/8/2005	GENERATOR	GAS	2384.	I MMBTU/H	DUCT BURNER - 605.6 MMBTU/HR	DRY LOW-NOX BURNERS AND SCR	t. 2	ppmvd	3 HOURS	1	2 PPMVD		1	0	
			COMBINED CYCLE NATURAL								1					1	
			GAS-FIRED								1					1	
			ELECTRIC								1					1	
OR-0048	CARTY PLANT	12/29/2010	GENERATING UNIT	NATURAL GAS	200	6 MMBTU/H		SELECTIVE CATALYTIC REDUCTION (SCR.)		nonmad	3-HOUR ROLLING		0		1 .		
OK-0048	CARLLILAMI	12/29/2010	CINII	G/AG	286	WIND LOW		REDUCTION (SCR) Utilize dry low-NOx burners when	1 '	руничи	MULLERU	 	_		+		
								combusting natural gas;		1		1				1	
			1					Utilize water injection when combusting ULSD:	1	1	1					1	
			Mitsubishi M501-					ULSD; Utilize selective catalytic reduction	1	1	1					1	
			GAC combustion					(SCR) with aqueous ammonia injection at	ıt		1					1	
	TROUTER LEE ENERGY		turbine, combined					all times except during startup and			3-HR ROLLING			3-HR ROLLING		1	
*OR-0050	TROUTDALE ENERGY CENTER, LLC	2/5/201/	cycle configuration with duct burner.	natural es	200	8 MMBtu/hr	or ULSD; Duct burner 499 MMBtu/hr, natural gas	shutdown; Limit the time in startup or shutdown.		nonmad	AVERAGE ON NG		5 PPMVD	AVERAGE ON ULSD	1 .		
JK-0030	CENTER, LLC	3/3/2014	with duct burner.	matural gs	298	,viistunif		uic uine in startup or snutdown.	1 '	руличи		3.	LIMIYD	ULSD	<u> </u>		
			L				Two combine cycle Turbines, each with a combustion turbine and heat recovery steam			1		1				1	
	MOXIE LIBERTY		Combined-cycle Turbines (2) -				generator with duct burner. Each combined-cycle process will be rated at 468 MW or less. The heat input rating of each combustion gas turbine is 2890 MMBtu/hr (HHV) or less, and the	Dry Jour-NOy (DI N) combustor or 3		1		1				1	
PA-0278	LLC/ASYLUM POWER PL T	10/10/2012	Natural gas fired	Natural Gas	327	7 MMBTU/H		selective catalytic reduction (SCR)	1 :	ppmvd		1 .	0		1 .	0	
	MOXIE ENERGY	12.13/2012	Combined Cycle		727	I											
en 4 0206	LLC/PATRIOT GENERATION PLT	101001	Power Blocks 472	Notare LC:			Two natural-gas-fired combined cycle powerblocks where each powerblock consists of a	ecn.	1 .		1		2 T/YR	EACH UNIT	1		
*PA-0286	GENERATION PL1	1/31/2013	MW - (2)	Natural Gas	+'		combustion turbine and heat recovery steam generator with duct burner.	DUR.	 	ppinva	+	1113	2 1/YK	EACH UNIT	+'	U	
			Combined Cycle								1					1	
	SUNBURY GENERATION		Combustion Turbine	:			Three powerblocks consisting of three (3) natural gas fired F class combustion turbines coupled				CORRECTED TO			DUCT BURNERS	3	1	DUCT BURNERS
*PA-0288	SUNBURY GENERATION LP/SUNBURY SES	4/1/2013	AND DUCT BURNER (3)	Natural Gas	252900	MMBTU/H	with three (3) heat recovery steam generators (HSRGs) equipped with natural gas fined duct burners	SCR	-	nomyd	CORRECTED TO 15% OXYGEN	17.	4 lb/hr	NOT OPERATING	10	4 I.B/H	OPERATING
0200		4/1/2013	(J)	, sucural Ods	2,3800		with natural gas fired duct burners. The Permittee shall select and install any of the turbine options listed below (or newer versions		1 '	,,,,,,,,,	- SA GALIGIAN	17.		OI LIGHTING	18.		
			1				of these turbines if the	I	1	1	1					1	
							Department determines that such newer versions achieve equivalent or better emissions rates and exhaust parameters)			1		1				1	
			1				1. General Electric 7FA (GE 7FA)	I	1	1	1					1	
							2. Siemens SGT6-5000F (Siemens F)				1					1	
	HOLOBY BL		COMBINED				3. Mitsubishi M501G (Mitsubishi G)				WITH OR			INCLUDING		1	
*PA-0291	HICKORY RUN ENERGY STATION	4/23/2013	CYCLE UNITS #1 and #2	Natural Gas	,	4 MMCF/HR	Siemens SGT6-8000H (Siemens H) The emissions listed are for the Siemens SGT6-8000H unit.	SCR	.	nomed	WITHOUT DUCT BURNER	17.2	5 T/YR	START UP AND SHUR DOWN	1 .	n	
1.75-0271		4/23/2013	uma #4	, saturar GdS	1	THE PART OF THE PA	The emission faces are for the stemens SOTO-000011 unit.	J. C.	1 '	ppalivu	12-MONTH	17.2	LIK	SHOK DOWN	<u> </u>		
	BERKS HOLLOW ENERGY		Turbine, Combined								ROLLING					1	
*PA-0296	ASSOC LLC/ONTELAUNEE	12/17/2013	Cycle, #1 and #2	Natural Gas	304	6 MMBtu/hr	Equipped with SCR and Oxidation Catalyst	SCR	131.6	T/Yr	TOTAL	-	0	+	+	D	BASED ON A 12-
			COMBINED							1		1				1	MONTH
	FUTURE POWER PA/GOOD		CYCLE UNIT								1			WITH DUCT		1	ROLLING
*PA-0298	SPRINGS NGCC FACILITY	3/4/2014	(Siemens 5000)	Natural Gas	226	7 MMBtu/hr		SCR	1 2	ppmvd	@ 15% OXYGEN	19.	6 lb/hr	BURNER	79.	9 TPY	TOTAL
							GREEN POWER ONE WILL CONSIST OF TWO NOMINALLY RATED 35 MW GAS				1					1	
							FIRED TURBINES AND TWO HEAT RECOVERY STEAM GENERATORS, EQUIPPED				1					1	
			1				WITH 312 MMBTU/HR DUCT BURNERS. THE COMBUSTION TURBINES WILL		1	1	1					1	
							ONLY BURN PIPELINE QUALITY SWEET NATURAL GAS. THE DUCT BURNERS WILL BURN NATURAL GAS, COMPLEX GAS OR MIXTURES OF NATURAL GAS	BP AMOCO PROPOSES TO USE SCR TO CONTROL NOX EMISSIONS	1		1					1	
							AND COMPLEX GAS. STEAM PRODUCED IN THE HRSGS WILL BE USED IN THE	FROM BOTH TURBINES AND DUCT	1		1					1	
							CHOCOLATE BAYOU WORKS CHEMICAL COMPLEX. THE CHEMICAL COMPLEX	BURNERS AFTER CONSIDERING			1					1	
			COGENERATION TRAIN 2 AND 3				WILL CONSUME APPROXIMATELY HALF OF THE ELECTRICAL OUTPUT PRODUCED BY THE TWO NEW TURBINES. EXCESS POWER PRODUCED BY THE	ALTERNATIVE NOX CONTROL METHODS. THE TURBINES AND	1	1	1					1	
			(TURBINE AND 3				PRODUCED BY THE TWO NEW TURBINES. EXCESS POWER PRODUCED BY THE COMBUSTION TURBINES WILL BE SOLD TO THE GRID.	METHODS. THE TURBINES AND DUCT BURNERS WILL ALSO USE			1					1	
	INEOS CHOCOLATE		DUCT BURNER	NATURAL				LOW NOX COMBUSTORS. BP			1					1	
TX-0497	BAYOU FACILITY	8/29/2006	EMISSIONS)	GAS	3:	5 MW	THE EMISSIONS ARE PER TRAIN.	AMOCO PROPOSES	11.43	lb/hr	3-HR AVG.	90.7	7 T/YR		1	0	

							Invenergy, LLC - Allegneny County Energ										
RBLCID	FACILITY NAME	PERMIT ISSUANCE DATE	PROCESS NAME	PRIMARY FUEL	THROUGHPUT	THROUGHPUT UNIT	PROCESS NOTES	CONTROL METHOD DESCRIPTION	EMISSION LIMIT 1	UNIT	AVG TIME CONDITION	EMISSION LIMIT 2	UNIT	AVG TIME CONDITION	STANDARAD EMISSION LIMIT	UNIT	AVG TIME CONDITION
	NACOGDOCHES POWER STERNE GENERATING		WESTINGHOUSE/ SIEMENS MODEL SW501F GAS TURBINE W/416.5 MMBTU DUCT					SITEAG FOWER LLC IS PROPOSING THE USE OF DRY LOW NOX (DLN) COMBUSTORS FOR THE TURBINES AND LOW NOX BURNERS IN THE DUCT BURNERS ALONG WITH SELECTIVE CATALYST REDUCTION (SCR) SYSTEM FOR THE CONTROL OF NOX EMISSIONS FROM THE									
TX-0502 TX-0516	FACILITY CITY PUBLIC SERVICE JK SPRUCE ELECTRICE GENERATING UNIT 2	6/5/2006	SPRUCE POWER GENERATOR UNIT NO 2	GAS	190	MW		COMB	45.4				14 T/YR 12 T/YR)	
TX-0546	PATTILLO BRANCH POWER PLANT		ELECTRICITY GENERATION	NATURAL GAS	350	MW	EACH TURBINE/HRSG WILL BE DESIGNED TO OUTPUT 350 MW. TURBINES BEING CONSIDERED FOR THE PROJECT ARE GE 7FA, GE 7FB, AND SIEMENS SGT6 5000F	SELECTIVE CATALYTIC REDUCTION	1600	ppmyd	@ 15% O2 24-HF ROLLING AVG	1/3	0				
TX-0547	NATURAL GAS-FIRED POWER GENERATION FACILITY	622/2009	ELECTRICITY OGENERATION	NATURAL	250		SOOIS LUMAR POWER TAR TESES PROPOSES TO CONSTRUCT A NATURAL CAS-FIRED COMBINED-CYCLE POWER BLOCK TO BE BUILT AT THE EXISTING SITE IN LAMAR COUNTY, TEXAS. THE NEW POWER BLOCK WILL BE CAPABLE OF PRODUCING EITHER 620 OR 910 MEGAWATTS OF ELECTRICITY, DEPENDING UPON WHICH COMBUSTION TURBINE MODEL OPTION IS CHOSEN. THE PROPOSED PROJECT WOULD INCLUDE TWO COMBUSTION TURBINES (EITHER PROPOSED PROJECT WOULD INCLUDE TWO COMBUSTION TURBINES (EITHER RECOVERY STEAM GENERATORS WITH DUCT BURNERS AND ONE STEAM TURBINE. THE GIFTAS WOULD BE CAPABLE OF PRODUCING 620 MW OF ELECTRICITY IN COMBINED CYCLE MODE, WHILE THE M501GS WOULD PRODUCED (EVERTAM COMBINED CYCLE MODE, WHILE THE M501GS WOULD PRODUCED (EVERTAM COMBINED CYCLE MODE.)	SELECTIVE CATALYTIC REDUCTION		pand	@ 15% O2, 24-HF ROLLING AVG						
120347	MADISON BELL ENERGY	0/22/2003	ELECTRICITY	NATURAL	230	atri	FOUR GE PG7121(EA) COMBINE CYCLE TURBINES FIRING NATURAL GAS WILL DIRECTLY GENERATE 75 MW; EACH HAS A 165 MMBTU/HR DUCT BURNER AND A HEAT BECOVERY STEAM GENERATOR. TWO HR 9GÂS WILL TIEN ONE 125			ppinvu							
TX-0548	MADISON BELL ENERGY CENTER	8/18/2009	GENERATION	GAS	275	MW	The plant will be designed to generate 1,350 nominal megawatts of power. There are two configuration scenarios: either four Siemens SGT6-5000F CTGs in combined-cycle mode	SELECTIVE CATALYTIC REDUCTION	2	ppmvd	@ 15% O2, 24-HF ROLLING AVG	1	0		()	
TX-0590	KING POWER STATION	8/5/2010	Turbine	natural gas	1350	MW	(Scenario A) or four GE Frame 7FA CTGs in combined cycle mode (Scenario B). Scenario B also includes one or two auxiliary boilers. (2) GETFA at 195 MW each, (1) steam turbine at 200 MW.	DLN burners and SCR	2	ppmvd	1-HOUR AVERAGE ROLLING 24-HR		0)	
TX-0600	THOMAS C. FERGUSON POWER PLANT	9/1/2011	Natural gas-fired turbines	natural gas	390	MW	Each turbine is equipped with an unfired heat recovery steam generator (HRSG), which provides steam for the steam turbine.	Dry low NOx burners and Selective Catalytic Reduction	2	ppmvd	AT 15% OXYGEN @15% O2 ON A 3	-	0)	
TX-0618	CHANNEL ENERGY CENTER LLC	10/15/2012	Combined Cycle Turbine	natural gas	180	MW	The turbine is a Siemens 501F rated at a nominal 180 MW and the duet burner will have a maximum design heat input of 475 MMBtulhr. natural gas-fired combined cycle turbine generator with a heat recovery steam generator	Selective catalytic reduction	2	ppmvd	HR ROLLING AVG		0)	
TX-0619	DEER PARK ENERGY CENTER	9/26/2012	Combined Cycle Turbine	natural gas	180	MW	equipped with a duct burner. The turbine is a Siemens 501F rated at a nominal 180 megawatts and the DB will have a maximum design rate capability of 725 million British thermal units per hour The three combustion turbine generators (CTG) will be the General Electric 7FA, each with a	Selective Catalytic Reduction	2	ppmvd	@15% O2, 3-HR ROLLING AVG		0				
TX-0620	ES JOSLIN POWER PLANT	9/12/2012	Combined cycle gas turbine	natural gas	195	MW	maximum base-load electric power output of approximately 195 megawatts (MW). The steam turbine is rated at approximately 235 MW. This project also includes the installation of two emergency generators, one fire water pump, and auxiliary equipment. No duct burners.	Selective catalytic reduction	2	ppmvd	@15% O2, 24-HR ROLLING AVG		0)	
*TX-0641	PINECREST ENERGY CENTER	11/12/2013	combined cycle	natural gas	700	MW	The generating equipment consists of two natural gas-fixed combustion turbines (CTA), each chausing to a first hot net recovery steam generated (IRISO) to produce steam to thive a shared steam turbine generater. The steam turbine is meted at 271 MW of electric output. Three models of combustion turbines are being considered for this site the General Electric TeA DS, the Siemens SCT6-5000F(4) and the Siemens SCT6-5000F(5). The final selection of the combustion turbine will not be made until after the permit is issued. Plant output will range between 637 and 735 MW, depending on the model turbine selected. Duxt Burners are rated at 750 MMBruthe vol.	selective catalytic reduction	2	ppmvd	24-HR ROLLING AVG, 15% OXYGEN		0		()	
*TX-0660	FGE TEXAS POWER I AND FGE TEXAS POWER II	3/24/2014	Alstom Turbine	Natural Gas	230.7	MW	Four (4) Alstom GT24 CTGs, each with a HRSG and DBs, max design capacity 409 MMBtu/hr	Selective catalytic reduction	2	ppmvd	CORRECTED TO 15% O2, ROLLING 24 HR AVE		0)	
*TX-0678	FREEPORT LNG PRETREATMENT FACILITY	7/16/2014	Combustion Turbine	natural gas	87	MW	The exhaust heat from the turbine will be used to heat a heating medium which is used to regenerate rich amine from the acid gas removal system.	Selective Catalytic Reduction	2	ppmvd	15@ O2, 3 HOUR ROLLING AVERAGE		0)	
*TX-0689	CEDAR BAYOU ELECTRIC GENERATION STATION	8/29/2014		Natural Gas	225	MW		DLN, SCR	2	ppmvd	24HR ROLLING AVG. @15% O2, 3-HR		0)	
*TX-0698	BAYPORT COMPLEX	9/5/2013	(4) cogeneration turbines	natural gas	90	MW	(4) GE 7EA turbines providing power and process steam The specific equipment includes two combustion turbines (CTs) connected to electric generators, producing between 183 and 22.2 MW of electricity, depending on ambient temperature and the selected CT. The two IRESGs use duet burners rated at 750 MMBhuhr each to supplement the heat energy from the CTs. The steam from the two IRESGs is combined and routed to a single steam turbine driving a third electric generator with an electricity output capacity of 271 MW. Depending on the selected CT, total plant output at 59ŰF is between 637 MW and 735 MW.	DLN and Closed Loop Emissions Controls (CLEC)	5	ppmvd	ROLLING AVERAGE		0				
*TX-0708	LA PALOMA ENERGY CENTER	2/7/2013	(2) combined cycle turbines Natural gas-fired	natural gas	650	MW	The applicant is considering three models of CT; one model will be selected and the permit revised to reflect the selection before construction begins. The three CT models are: (1) General Electric 7FA.04; (2) Siemens SGT6-5000F(4); or (3) Siemens SGT6-5000F(5).	Selective Catalytic Reduction	2	ppmvd	@15% O2, 24-HR ROLLING AVERAGE		0)	
*TX-0709	SAND HILL ENERGY CENTER	9/13/2013	combined cycle turbines	Natural Gas	173.9	MW	General Electric 7FA.04 at 197 MW nominal ouput. The duct burners will be capable of a	SCR	2	ppmvd	24HR ROLLING AVG.		0				
*TX-0710	VICTORIA POWER STATION	12/1/2014	combined cycle	natural gas	197	MW	maximum natural gas firing rate of up to 483 MMBtuhr (HHV). The duct burners may be fired additional hours; however, total annual firing will not exceed the equivalent of 4,375 hours at maximum capacity per duct burner. The available capacity of the existing steam turbine will be increased from 125 MW in its existing 1x1x1 configuration to approximately	Selective Catalytic Reduction		ranmed	@15% O2, 24-HR ROLLING AVERAGE	,	.5 PPMVD	@15% O2, 3-HR ROLLING AVERAGE			
	TRINIDAD GENERATING FACILITY	11/20/2014	combined cycle	natural gas		MW	188 MW in the 2c2xl configuration. The facility will consist of a Mistabishi Heavy Industries (MHI) J model gas fired combustion turbine nominally rated at 497 megawatts (MW) equipped with a HRSG and DB with a maximum design capacity of 402 million British thermal units per hour (MMBtuhr). The gooss nominal output of the CTG with HRSG and DB is 530 MW.	Selective Catalytic Reduction	2	ppmvd	@15% O2, 24-HR ROLLING AVERAGE	3.	0	2.VEKAGE			

RBLCID		PERMIT ISSUANCE DATE	PROCESS NAME	PRIMARY FUEL	THROUGHPUT	THROUGHPUT UNIT	PROCESS NOTES	CONTROL METHOD DESCRIPTION	EMISSION LIMIT 1	UNIT	AVG TIME CONDITION	EMISSION LIMIT 2	UNIT	AVG TIME CONDITION	STANDARAD EMISSION LIMIT	UNIT	AVG TIME CONDITION
	TENASKA BROWNSVILLE		(2) combined cycle				Each CTG is site-rated at 274 MW gross electric output at 62ŰF ambient temperature. At this condition, two HRSGs with full duct barner firing produce enough steam to generate an additional 336 MW, for a total of 884 MW gross, or with about 5% losses, about 840 MW net electric output. Under summertime conditions, the not output is approximately 800 MW with				@15% O2, 24-HR ROLLING						
*TX-0713	GENERATING STATION	4/29/2014	turbines	natural gas	274	MW	the 2x1 CCGT configuration or about 400 MW with the 1x1 CCGT configuration. The gas turbines will be one of three options:	Selective Catalytic Reduction	2	ppmvd	AVERAGE	((
							(1) Two Siemens Model F5 (SF5) CTGs each rated at nominal capability of 225 megawatts (MW). Each CTG will have a duct fired HRSG with a maximum heat input of 688 million British thermal units per hour (MMBtu/hr).										
							(2) Two General Electric Model 7FA (GE7FA) CTGs each rated at nominal capability of 215 MW. Each CTG will have a duet fired HRSG with a maximum heat input of 523 MMBtu/hr.										
*TX-0714	S R BERTRON ELECTRIC GENERATING STATION	12/19/2014	(2) combined cycle turbines Combined-cycle gas	natural gas	240	MW	(3) Two Mitsubishi Heavy Industry G Frame (MHIS01G) CTGs each rated at a nominal electric output of 263 MW. Each CTG will have a duct fired HRSG with a maximum heat input of 686 MMBtu/hr.	Selective Catalytic Reduction	2	ppmvd	@15% O2, 24-HR ROLLING AVERAGE						
*TX-0730	COLORADO BEND ENERGY CENTER	4/1/2015	turbine electric generating facility	natural gas	1100	MW	combined cycle power plant that uses two combustion turbines and one steam turbine, model GE 7HA.02	SCR and oxidation catalyst	2	ppmvd	24-HR AVERAGE						
TX-0751	EAGLE MOUNTAIN STEAM ELECTRIC STATION	6/18/2015	Combined Cycle Turbines (>25 MW) â& natural	natural gas		MW	Two power configuration options authorized Siemens âc 231 MW + 500 million British thermal units per hour (MMBtu/hr) duct burner GE âc* 210 MW + 349.2 MMBtu/hr duct burner	Selective Catalytic Reduction			ROLLING 24-HR AVERAGE						
12-0731	ELECTRIC STATION	0/18/2013	Combined Cycle	naturar gas	210	N.W	Two power configuration options authorized	Scientive Catalytic Reduction	†	ppinva	AVERAGE	,			,		
*TX-0767	LON C. HILL POWER STATION	10/2/2015	Turbines (>25 MW)	natural gas	195	MW	Siemens â€" 240 MW + 250 million British thermal units per hour (MMBtu/hr) duct burner GE â€" 195 MW + 670 MMBtu/hr duct burner	Selective Catalytic Reduction	2	ppmvd	ROLLING 24-HR AVERAGE	(
			COMBINED CYCLE TURBINE					Two-stage, lean pre-mix dry low-NOx combustor and a selective catalytic									
VA-0315	WARREN COUNTY POWER PLANT - DOMINION	12/17/2010	& DUCT BURNER, 3	Natural Gas	2996	MMBTU/H	Emissions are for one of three units (Mitsubishi natural gas-fired combustion turbine (CT) generator, Model M501 GAC).	reduction (SCR) control system using ammonia injection.	2	ppmvd	ONE HOUR AVERAGE	25.3	lb/hr	ONE HOUR AVERAGE	(
l	BRUNSWICK COUNTY		COMBUSTION TURBINE				Three (3) Mitsubishi M501 GAC combustion turbine generators with HRSG duct burners	Selective catalytic reduction and ultra									
*VA-0321	POWER STATION GREEN ENERGY	3/12/2013	GENERATORS, (3) Large combustion turbines	Natural Gas	3442	MMBTU/H	(natural gas-fired). Throughput and Units above are for the GEF7.05.	low NOx burners. Selective Catalytic Reduction (SCR).	1	ppmvd	1 H AVG		1		(
*VA-0322	PARTNERS/ STONEWALL, LLC	4202013	(>25MW) CCT1 and CCT2	Natural Gas	2.22	MMBTU/hr	Siemens SGTF-5000F5: Throughput: 2.260 MMBTU/hr	with ammonia injection and dry low NOx combusion.									
- VA-0322	iii	4/30/2013	GE 7FA COMBUSTION TURBINE & amp;		2.23	MWB1C/m											
WA-0328	BP CHERRY POINT COGENERATION PROJECT	1/11/2005	HEAT RECOVERY STEAM GENERATOR	NATURAL GAS	174	MW	THREE IDENTICAL CT & HSRG UNITS. EACH CT WILL HAVE AN ANNUAL AVERAGE CAPACITY RATING OF 1614 MMBTU/HB. EACH HRSG DUCT BURNER WILL HAVE A MAXIMUM FIRING RATE OF 105 MMBTU/HB. This entry is for both of two identical units at the facility.	LEAN PRE-MIX DRY LOW-NOX BURNERS ON CT. LOW-NOX DUCT BURNERS. SCR.	2.5	ppmvd	3-HR @ 15%O2	((*SEE NOTES
*WV-0025	MOUNDSVILLE COMBINED CYCLE POWER PLANT	11/21/2014	Combined Cycle Turbine/Duct Burner	Natural Gas	2419.61	mmBtu/Hr	Nominal 197 mW General Electric Frame 7FA.04 Turbine w/ Duct Burner - throughput denotes aggregate heat input of turbine and duct burner (HHV).	SCR & Dry Low-NOx Burners	15.2	lb/hr		(30-DAY	2	PPM	@ 15% O2
*WY-0070	CHEYENNE PRAIRIE GENERATING STATION	8/28/2012	Combined Cycle Turbine (EP01)	Natural Gas	40	MW		SCR	3	ppmvd	1-HOUR	4.6	lb/hr	ROLLING AVERAGE	25.5	T/YR	
	CHEYENNE PRAIRIE		Combined Cycle											30-DAY ROLLING			
*WY-0070	GENERATING STATION	8/28/2012	Turbine (EP02)	Natural Gas	40	MW		SCR	3	ppmvd	1-HOUR 3-hour block	4.6	lb/hr	AVERAGE		T/YR	
	Astoria Energy LLC		Combustion Turbine	Natural Gas	1000	MW		SCR/Low NOx Burners	2	ppmvd	average; Duct Burners On	15	lb/hr	1-hr average; Due Burners On	et		
	Astoria Energy LLC		Combustion Turbine	Natural Gas	1000	MW		SCR/Low NOx Burners	0.2	lb/MMBtu	1-hour average						
	Catastin Power I I C		Combustion Turbine	Natural Gas	170	MW		Pipeline quality low sulfur NG; DLN combustion design; Low NOx burners; SCR	,,	named	1 hr average; Duct						
	Catoctin Power LLC Footprint Power Salem Harbor Development LP		Combustion Turbine	Natural Gas		MW		SCR/Low NOx Burners	18.1	lb/hr	Burners On 1-hr average; Duct Burners On	0.007/	lb/MMBtu	1-hr average; Due Burners On	et .		
	Footprint Power Salem Harbor Development LP		Combustion Turbine	Natural Gas		MW		SCR/Low NOx Burners	10.1	nomud	1-hr average; Duct Burners On		lb/MW-hr	1-hr average; Due Burners On	et		
	Kalama Energy Center		Combustion Turbine			MMBtu/hr		SCR	2	ppmvd	1-hr average	18.5		1-hr average			
	Kalama Energy Center		Combustion Turbine			MMBtu/hr		SCR	15	ppmvd	30-day average		T/YR	12-mo rolling			
	Lawrence Energy Center LLC		Combustion Turbine	Natural Gas	180	MW		SCR with Dry Low Nox (DLN) Burners	3	ppmvd	1-hr average						
	GenConn Middletown LLC		Combustion Turbine	Natural Gas	474.9	MMBtu/hr			2.5	ppmvd							
	PacifiCorp Energy PacifiCorp Energy		Block 1 CT Block 2 CT	Natural Gas Natural Gas	629	MW			2	ppmvd	3-hour 3-hour	14.9	lb/hr lb/hr				
	Pioneer Valley		Combustion Turbine	Natural Gas	387	MW			2	ppmvd	1-hr average						
	Russell City Energy Company, LLC		Combustion Turbine	Natural Gas	2038.6	MMBtu/hr			2	ppmvd	1-hr average			1			
	Sevier Power Company Power Plant CPV Valley Energy Center		Combustion Turbine	Natural Gas	580	MW			2	ppmvd	3-hr average			1			1
<u> </u>	Wawayanda, NY CPV Valley Energy Center			Natural Gas	630	MW			2	ppmvd	3-hr average		-	+		-	1
<u> </u>	Wawayanda, NY Woodbridge Energy Center			Natural Gas	630	MW			2	ppmvd	3-hr average		-	+		-	-
	(CPV Shore, LLC) Woodbridge Energy Center			Natural Gas		MMBtu/hr			2	ppmvd			-	+		-	1
	(CPV Shore, LLC)			Natural Gas	2307	MMBtu/hr		-	2	ppmvd			-	+		-	1
	PA STATE UNIV/UNIV		COMBINED HEAT AND POWER DUAL-FIRED COMBUSTION			MO (Decile											
	PARK CAMPUS		TURBINE	Natural Gas		MMBtu/hr			13	ppnivd		17.4		1			1
	Hummel Station LLC	l	Combustion Turbine	Natural Gas	2254	MMBtu/hr			18.4	Ib/hr	L	17.4	lb/hr			1	

DDI GID		PERMIT ISSUANCE DATE	PROCESS NAME	PRIMARY	THROUGHPUT	TUROU CURVE UNIT	ANALYSIS NOW,	CONTROL METHOD DESCRIPTION	EMISSION LIMIT 1	UNIT		EMISSION LIMIT 2	UNIT		STANDARAD EMISSION LIMIT		AVG TIME CONDITION
RBLCID	FACILITY NAME	DATE	PROCESS NAME	FUEL	THROUGHPUT	THROUGHPUT UNIT	PROCESS NOTES	DESCRIPTION	LIMIT I	UNII	CONDITION	LIMIT 2	UNII	CONDITION	EMISSION LIMIT	UNII	CONDITION
1	0:1:11				1000												
_	Cricket Valley Energy Center		Combustion Turbine	Naturai Gas	1000	MW				2 ppmvd	1-hr average						
	Effingham County Power		Combustion Turbine	Natural Gas	180	MW				2 ppmvd	3-hr average						
	Gibson County Generation,																
	LLC		Combustion Turbine	Natural Gas	417	7 MW				2 ppmvd	24-hr average	0.0073	lb/MMBtu				
	Tenaska Partners LLC		Combustion Turbine	Natural Gas	3141	7 MMBtu/hr				2 ppmvd		26.5	lb/hr				
	UGI Development Co/ Hunlock																
	Creek		Combustion Turbine			MMBtu/hr				9 ppmvd							
	Hawkeye Generating, LLC			Natural Gas	61:	MW			0.008	8 lb/MMBtu	3-hr rolling	185.64	T/YR				
	Huntington Beach Energy			Natural Gas		MW (net)					1-hr rolling						
_	Project			Natural Gas	935	MW (net)				2 ppmvd	1-hr rolling						
1	Hess Newark Energy Center		Combustion Turbine	Natural Gas	2264	MMBtu/hr				2 ppmyd		0.0073	lb/MMBtu				
	TICSTICHUR LINERY CORCI		Companion ruibine	Tuturun Gus	2200	, minipular				2 ppinitu	3-hour average.	0.007.	iconini di di				
	York Energy Center Block 1				1574	MMBtu/hr				2 ppmvd	rolling by 1-hour						
											3-hour block						
											average; average or	f					
	York Energy Center Block 2	6/15/2015	5		2512.5	MMBtu/hr	firing NG with duct burner			2 ppmyd	3 test runs						
	Shell Chemical																
1	Appalachia/Petrochemicals																
	Complex	6/18/2015	5		664	4 MMBtu/hr	each turbine/duct burner			2 ppmvd	1-hour average	lb/hr					
	Calpine/Bethlehem Energy																
	Center				122	MW			2.	5 ppmvd							
1	Liberty Electric Power, LLC			1	1954	MMBtu/hr	With DB			5 ppmvd							1

		PERMIT ISSUANCE		PRIMARY			I	CONTROL METHOD	IEMISSION		AVG TIME	EMISSION		AVG TIME	STANDARAD		AVG TIME
RBLCID	FACILITY NAME	DATE	PROCESS NAME	FUEL	THROUGHPUT	THROUGHPUT UNIT		DESCRIPTION	LIMIT 1	UNIT	CONDITION	LIMIT 2	UNIT	CONDITION	EMISSION LIMIT	UNIT	CONDITION
			Combined-cycle				3-on-1 combined cycle unit. GE 7HA.02 turbines, approximately 350 MW per turbine Total unit generating capacity is approximately 1,600 MW. Primarily fueled with				GAS. 24-HR			ULSD, 24-HR			
	OKEECHOBEE CLEAN		electric			MMBtu/hr per	natural gas. Permitted to burn the base-load equivalent of 500 hr/yr per turbine on	Selective catalytic reduction; dry low-	1-	PPMVD@15%	BLOCK,		PPMVD@15%	BLOCK,			
FL-0356	ENERGY CENTER	3/9/2016	generating unit	Natural gas	3096	turbine	ULSD.	NOx; and wet injection	2	02	EXCLUDING SSN	1 8	02	EXCLUDING SSM	0		
			EUCCT (Combined				A 1,934.7 MMBTU/H natural gas fired heavy frame industrial combustion turbine.				24-H ROLL.AVG. EXCEPT	'		24-H ROLL.AVG., EXCEPT			
			cycle CTG with				The turbine operates in combined-cycle with an unfired heat recovery steam	SCR with DLNB (Selective catalytic			STARTUP/SHUTI	D		STARTUP/SHUTE	,		
MI-0427	FILER CITY STATION	11/17/2017	unfired HRSG)	Natural gas	1934.7	MMBTU/H	generator (HRSG).	reduction with dry low NOx burners).). 3	PPM	OWN	21.4	LB/H	OWN	0		
							This emission unit is being entered as a separate process to account for the emission limits associated with startup/shutdown events, which could not be included within										
							the previous EUCCT original process name.										
			EUCCT (Startup/Shutdow				A 1,934.7 MMBTU/H natural gas fired heavy frame industrial combustion turbine. The turbine operates in combined-cycle with an unfired heat recovery steam	SCR with DLNB (Selective catalytic									
MI-0427	FILER CITY STATION	11/17/2017	(Startup/Snutdow	Natural gas	1934.7	MMRTU/H	generator (HRSG).	reduction with dry low NOx burners).	32	POUNDS	PER EVENT	0					
1111 0-127	TILLIN CHI I SIMILON	11/1//201/	Combined Cycle	ivatarar gas	1334.7	WWW.DTO/II	Seriotor (mod).	reduction war ary low nox burners).	. 32	1001103	T EN EVENT	Ť			1		
			&				2 CTGs to operate in simple cycle & combined cycle modes. 231 MW (Siemens) or										
TX-0788	NECHES STATION	3/24/2016	Cogeneration	Natural gas	231	MW	210 MW (GE) Simple cycle operations limited to 2,500 hr/yr.	Selective Catalytic Reduction	2	PPM		0			0		
	DECORDOVA STEAM		Combined Cycle &:				2 CTGs to operate in simple cycle & combined cycle modes. 231 MW (Siemens) or										
TX-0789	ELECTRIC STATION	3/8/2016	Cogeneration	Natural gas	231	MW	210 MW (GE). Simple cycle operations limited to 2,500 hr/yr.	Selective Catalytic Reduction	2	PPM		0			0		
			Refrigeration														
TX-0790	PORT ARTHUR LNG EXPORT TERMINAL	2/17/2016	Compression Turbines		40	M TONNES/YR	55 55 55 55 55 55 55 55 55 55 55 55 55	Dry low NOx burners and good		PPM	ROLLING 24-HR AVERAGE						
17-0/30	LEMINAL	2/1//2010	Simple Cycle	Natural gas	10	IVI I UNINES/TR	Four GE Frame 7E gas turbines for refrigeration and compression at the site	combustion practices	9	CEIVI	AVERAGE	ľ		+	1		
			Electrical														
	PORT ARTHUR LNG EXPORT	1	Generation Gas				Nine GE PGT25+G4 gas turbines for electrical generation at the site at 34				ROLLING 24-HR						
TX-0790	TERMINAL	2/17/2016	Turbines 15.210	Natural gas	34	MW	MW/turbine	SELECTIVE CATALYTIC REDUCTION	5	PPM	AVERAGE	0	+	+	10		
								Turbines EU IDs 5 through 8 shall be									
								equipped with Selective Catalytic									
								Reduction and Dry Low NOx (SCR and									
								DLN) combustors. SCR is a post- combustion gas treatment technique for									
								reduction of nitric oxide (NO) and									
								nitrogen dioxide (NO2) in the turbine exhaust stream to molecular nitrogen,									
								water, and oxygen. This process is									
								accomplished by using ammonia (NH3)									
								as a reducing agent, and is injected into the flue gas upstream of the catalyst bed.									
								By lowering the activation energy of the									
								NOx decomposition removal efficiency of 80 to 90 percent are achievable. DLN	of								
								combustors utilize multistage premix									
								combustors where the air and fuel is mixed at a lean fuel to air ratio. The									
								excess air in the lean mixture acts as a									
								heat sink, which lowers peak combustion									
								temperatures and also ensures a more homogeneous mixture, both resulting in									
	INTERNATIONAL STATION						EU IDs 5-8 Combined Cycle Natural Gas-fired Combustion Turbines rated at 59,900 hp (44.7	greatly reduced NOx formation rates.									
AK-0073	POWER PLANT BLYTHE ENERGY PROJECT	12/20/2010	Fuel Combustion 2 COMBUSTION	Natural Gas NATURAL	59900	HP	MW)	DLN can reduce emissions by about 60% SELECTIVE CATALYTIC	5 5	PPMVD	4-HOUR AT 15% O2, 3-HI	0			0		
CA-1144	п	4/25/2007	TURBINES	GAS	170	MW	EACH TURBINE WILL PRODUCE 170 MW	REDUCTION	2	PPMVD	AVG	14.8	lb/hr		0		
CA-1177	OTAY MESA ENERGY CENTER LLC	7/22/2009	Gas turbine combined cycle	Natural gas	171 7	MW		SCR	2	PPMVD	1 HOUR	0			0		
CIT-TITT	CLIVILICADO	11222007		Trucului gus	.,.,		Source test results:	Sex	-		IIIOOK	ľ			ľ		
CA-1178	APPLIED ENERGY LLC	3/20/2009	Gas turbine combined cycle	Natural gas	0		1.45 ppm NOx @ 15% O2 or 2.19 lb/hr <0.22 ppm VOC @15%O2 or <0.12 lb/hr	SCR	2	PPMVD	1 HOUR	0			0		
-75-11/0			COMBUSTION	. rusunui gas	ľ	1	ppm - 20 (B) 12 (2004 of Total form		f		· · · · · ·	ľ	_		ľ		
			TURBINE #2 (NORMAL								@15% O2, 1-HR						
	VICTORVILLE 2 HYBRID		OPERATION, NO	NATURAL							AVG (NO DUCT		1	1-HR AVG (NO			
CA-1191	POWER PROJECT	3/11/2010	DUCT BURNING) COMBUSTION	GAS	154	MW	154 MW Combined Cycle Combustion Turbine Generator	SCR	2	PPMVD	BURNING)	11.55	lb/hr	DUCT BURNING	0		
			TURBINE #1										1				
	VICTORVII I E A VICTORVI		(NORMAL								1-HR AVG,		1	IIII 43/2 2:-			
CA-1191	VICTORVILLE 2 HYBRID POWER PROJECT	3/11/2010	OPERATION, NO DUCT BURNING)	Natural Gas	154	MW	154 MW Combined Cycle Combustion Turbine Generator	SCR	2	PPMVD	@15% O2 (NO DUCT BURNING	i) 11.55	lb/hr	1-HR AVG, (NO DUCT BURNING	0		
			COMBUSTION TURBINE #1														
			TURBINE #1 (NORMAL										1				
			OPERATION, NO	NATURAL							@15% O2, 1-HR		1				
CA-1192	AVENAL ENERGY PROJECT	16/21/2011	DUCT BURNING) COMBUSTION	GAS	180	MW		SCR, DRY LOW NOX COMBUSTORS	3 2	PPMVD	AVG	13.55	lb/hr	1-HR AVG	0		
			TURBINE #2										1				
			(NORMAL OPERATION, NO	NATIDAL							@15% O2, 1-HR		1				
CA-1192	AVENAL ENERGY PROJECT	6/21/2011	DUCT BURNING)		180	MW		SCR, DRY LOW NOX COMBUSTORS	2	PPMVD	@15% O2, 1-HR AVG	13.55	lb/hr	1-HR AVG	0		
			COMBUSTION				TWO NATURAL GAS-FIRED COMBUSTION TURBINE-GENERATORS (CTGS) RATEL AT 154 MEGAWATT (MW, GROSS) EACH, TWO HEAT RECOVERY STEAM										
			TURBINES				GENERATORS (HRSG), ONE STEAM TURBINE GENERATOR (STG) RATED AT 267	DRY LOW NOX (DLN)									
I	PALMDALE HYBRID	l	(NORMAL	NATURAL	L	l	MW, AND 251 ACRES OF PARABOLIC SOLAR-THERMAL COLLECTORS WITH	COMBUSTORS, SELECTIVE			@15% O2, 1-HR	1.			L		
CA-1212	POWER PROJECT	10/18/2011	OPERATION) NATURAL-GAS	GAS	154	MW	ASSOCIATED HEAT-TRANSFER EQUIPMENT	CATALYTIC REDUCTION (SCR)	2	PPMVD	AVG	10	+	+	ľ		
			FIRED,														
CO-0056	ROCKY MOUNTAIN ENERGY CENTER, LLC	5/2/2006	COMBINED- CYCLE TURBINE	NATURAL GAS	300	MW	ONE NEW COMBINED-CYCLE TURBINE IS BEING ADDED TO AN EXISTING FACILITY.	LOW NOX BURNERS AND SCR	3	PPMVD	HOURLY MAX	0.013	LB/MMBTU	SEE NOTE	3	PPM @ 15% O2	
CO-0036		5/2/2000	Four combined	una	550	101.07				I I WI V D	INOURL I MAX	3.013	LD/MMD1U			W (44) 1370 OZ	
*CO-0073	PUEBLO AIRPORT	7727010	cycle combution		272		Three GE, LMS6000 PF, natural gas-fired, combined cycle CTG, rated at 373 MMBtu per	Dry Low NOx (DLN) Combustor and	,	PPMVD	I IID AND	L.,	n. a	30-DAY			
	GENERATING STATION	7/22/2010	turbines	maturai gas	13/3	mmotu/nr	hour each, based on HHV and one (1) HRSG each with no Duct Burners	Selective Catalytic Reduction (SCR)	13	PPMVD	1-HR AVE	[4.1	ID/Dr	ROLLING AVE	Įν		

		IPERMIT ISSUANCE	_	IPRIMARY			Invenergy, LLC - Allegneny County Energ	CONTROL METHOD	TEMISSION		TAVC TIME	TEMISSION		IAVC TIME	ISTANDARAD		AVG TIME
RBLCID	FACILITY NAME	DATE DATE	PROCESS NAME	FUEL	THROUGHPUT	THROUGHPUT UNIT	PROCESS NOTES	DESCRIPTION	LIMIT 1	UNIT		LIMIT 2	UNIT	CONDITION	EMISSION LIMIT	UNIT	CONDITION
							500 MMBTU/hr Gas Turbine (Model: GE LM6000) rated at 52 MW and 155 MMBTU/hr							@ 15% OXYGEN			
	NRG ENERGY CENTER						Heat Recovery Steam Generator rated at 18 MW. The unit is required to operate a certified							BASED ON A 1			
DE-0023	DOVER	10/31/2012	UNIT 2- KD1	Natural Gas	655	MMBTU/H	CEMS and COMS.	Selective Catalytic Reduction	5.76	lb/hr	1 HR AVERAGE HOURLY AS	2.5	PPMVD	HOUR AVERAGE 3 HOUR	0	+	
E-0024	GARRISON ENERGY CENTER	1/30/2013	** ** *	Natural Gas	2250	million BTUs		Low NOx Combustors, Selective		PPMVD	BASELOAD ON NAT. GAS		PPMVD	AVERAGE ON ULSD OIL			
DE-0024			COMBINED	NATURAL	2260	million BTUs		Catalytic Reduction	2			6		ULSD OIL	0	+	
L-0265	HINES POWER BLOCK 4	6/8/2005	CYCLE TURBINE	GAS	530	MW	2117 MMBTU/HR FUEL OIL.	SCR	2.5	PPMVD	NATURAL GAS	10	PPMVD	OIL	2.5	PPM @ 15% O2	
							EACH COMBINED CYCLE UNIT SYSTEM (TWO &Isquo &Isquo 3-ON-I&Isquo &Isquo) WILL CONSIST OF: THREE NOMINAL 250 MEGAWATT MODEL 501G GAS TURBINE-ELECTRICAL GENERATOR SETS WITH EVAPORATIVE INLET COOLING										
			COMBINED CYCLE COMBUSTION				TORBINS-ELECTRICAL GENERALOW SETS WITH EVALVAGRATIVE RICH COOLING SYSTEMS, THERE SUPPLEMENTARY-FIRED HEAT RECOVERY STEAM GENERATORS (HRSGÁ,S) WITH SCR REACTORS, ONE NOMINAL 428 MMBTU/HOUR (LHV) GAS-FIRED DUCT BURNER LOCATED WITHIN EACH OF THE THREE HRSGÁ,S; THREE 149 FEET EXHAUST STACKS; ONE 26 CELL										
L-0286	FPL WEST COUNTY ENERGY CENTER	1/10/2007	GAS TURBINES - 6 UNITS	NATURAL	2222	MMBTU/H	MECHANICAL DRAFT COOLING TOWER: AND A COMMON NOMINAL 500 MW	DRY LOW NOX AND SCR WATER INJECTION	2	PPMVD	24-HR (GAS)		PPMVD	24-HR (OIL)			
FL-0286	ENERGY CENTER	1/10/2007	6 UNITS	GAS	2333	MMB10/H	STEAM-ELECTRICAL GENERATOR. FUELHEAT INPUT RATE (LHV): OIL2,117 MMBTU/H COMBNED CYCLE UNT 3 WILL CONSIST OF: THREE NOMINAL 250 MW	WATER INJECTION	2	FFMVD	24-FR (GAS)		FFMVD	24-rik (OiL)	0		
	FPL WEST COUNTY		THREE NOMINAL 250 MW CTG (EACH) WITH SUPPLEMENTAR	NATURAL			COMBUSTION TURBINE-ELECTRICAL GENERATORS (CTG) WITH EVAPORATIVE INLET COOLING SYSTEMS; THREE SUPPLEMENTARY-FIRED HEAT RECOVERY STEAM GENERATORS (HRSG) WITH SELECTIVE CATALYTIC REDUCTION (SCR)	DRY LOW NOX									
FL-0303	ENERGY CENTER UNIT 3	7/30/2008	Y-FIRED HRSG	GAS	2333	MMBTU/H	REACTORS AND A COMMON NOMINAL 500 MW STEAM-ELECTRICAL GENERATOR.	SELECTIVE CATALYST REDUCTION	2	PPMVD	24 HOURS	8	PPMVD	24 HOURS	0		
			300 MW COMBINED				Four GE 7FA combined cycle turbines, dry low NOx burners and selective catalytic reduction.										
	CANE ISLAND POWER		CYCLE COMBUSTION	NATURAL			These limits are for each of the 4 turbines individually, while operating with the duct burners on. This permit is a modification to RBLC OH-0252 to remove hourly restrictions on duct										
FL-0304	PARK	9/8/2008	TURBINE	GAS	1860	MMBTU/H	humers	SCR	2	PPMVD	24-HR	0			0		
							Basis for the emission standard is either NSPS Subpart KKKK or Department BACT determinations										
							The BACT emission standards for NOX while operating in combined cycle are more stringent										
FL-0337	POLK POWER STATION	10/14/2012	Combine cycle power block (4 on 1) COMBINED	natural gas	1160	MW	than the corresponding Subpart KKKK emissions standards of 15 and 42 ppmvd @15% O2 on a 30-day rolling average for natural gas and fuel oil, respectively.	SCR/DLN	2	PPMVD	24-HR BLOCK (GAS) CEMS	8	PPMVD	24-HR BLOCK (OIL) CEMS	0		
			COMBINED								,,			,		1	
			COMBUSTION											12			
			TURBINE - ELECTRIC					DRY LOW NOX BURNERS,			3 HOUR			CONSECUTIVE MONTH			
			GENERATING	NATURAL				SELECTIVE CATALYTIC			AVERAGE/COND			AVERAGE/CONE			
GA-0138	LIVE OAKS POWER PLANT	4/8/2010	PLANT	GAS	600	MW		REDUCTION	2.5	PPMVD	ITION 2.11 30-DAY	87	T/YR	ITION 2 12-MONTH	0	+	
	MARSHALLTOWN		Combustion turbine				two identical Siemens SGT6-5000F combined cycle turbines without duct firing, each at 2258				ROLLING AVG.			ROLLING			
*IA-0107	GENERATING STATION	4/14/2014	#1 - combined cycle	natural gas	2258	mmBtu/hr	mmBtu/hr generating approx. 300 MW each.	Low-NOx burners and SCR	2	PPMVD	@15% O2 30-DAY	114.5	T/YR	TOTAL 12-MONTH	0	+	
	MARSHALLTOWN		Combustion turbine								ROLLING			ROLLING			
*IA-0107	GENERATING STATION	4/14/2014	#2 -combined cycle	natural gas	2258	mmBtu/hr		SCR, Low-NOx burner LOW NOX BURNERS AND	2	PPMVD	AVERAGE	114.5	T/YR	TOTAL	0		
			GAS TURBINES -					SELECTIVE CATLYTIC REDUCTION			HOURLY			ANNUAL			ANNUAL
LA-0192	CRESCENT CITY POWER	6/6/2005	187 MW (2) Combined Cycle		2006	MMBTU/H		(SCR) ADD-ON CONTROLS	21.8	lb/hr	MAXIMUM	95.5	T/YR	MAXIMUM	3	PPM	AVERAGE
	SABINE PASS LNG		Refrigeration Compressor								HOURLY						
LA-0257	TERMINAL	12/6/2011	Turbines (8)	natural gas	286	MMBTU/H	GE LM2500+G4	water injection	22.94	lb/hr	MAXIMUM	0			20	PPMV	AT 15% O2
			Combined cycle				This is a combined-cycle combustion turbine with a non-fired heat recovery steam generator (HRSG)										
			combustion turbine								24-HR ROLLING			24-HR ROLLING			
*MI-0402	SUMPTER POWER PLANT	11/17/2011	w/ HRSG	Natural gas	130	MW electrical output	Natural gas-fired combustion turbine conversion to combined-cycle. Throughput is 2,237 MMBTU/H for each CTG	Low NOx burners	9	PPMVD	AVERAGE	36.9	lb/hr	AVERAGE	0	+	
			Natural gas fueled				Equipment is permitted as following flexible group (FG):										
			combined cycle combustion turbine				FG-CTG1-2: Two natural gas fired CTGs with each turbine containing a heat recovery steam generator (HRSG) to operate in combined cycle. The two CTGs (with HRSG) are connected				EACH CTG: 24-H						
*MI-0405	MIDLAND COGENERATION VENTURE	4/23/2013	generators (CTG) with HRSG	Natural gas	2237	MMBTU/H	to one steam turbine generator. Each CTG is equpped with a dry low NOx (DLN) burner and a selective catalytic reduction (SCR) system. Natural gas irred CTG with DB for HRSG; 4 total.	catalytic reduction (SCR) system.	2	PPMVD	ROLLING AVG.	16.2	lb/hr	EACH CTG; 24-H ROLLING AVG.	0		
		1									1						
							Technology A (4 total) is 2587 MMBTU/H design heat input each CTG.										
							Technology B (4 total) is 2688 MMBTU/H design heat input each CTG.										
							Permit was issued for either of two F Class turbine technologies with slight variations in										
			FGCCA or FGCCB-]			emission rates. Applicant will select one technology. Installation is two separate CTG/HRSG trains driving one steam turbine electrical generator; Two 2X1 Blocks. Each CTG will be										
	THETFORD GENERATING	L	4 nat. gas fired CTG			MMBTU/H heat input,	rated at 211 to 230 MW (gross) output and the station nominal generating capacity will be up	Low NOx burners and selective catalytic			24-H ROLLING		L.		ļ.		
*MI-0410	STATION	7/25/2013	w/ DB for HRSG TURBINE,	natural gas	2587	each CTG	to 1,400 MW.	reduction. SELECTIVE CATALYTIC	3	PPMVD	AVERAGE	760	Ib/hr	1-H AVERAGE	0	+	+
NJ-0074	WEST DEPTFORD ENERGY	5/6/2000	COMBINED CYCLE	NATURAL	17298	MMFT3/YR		REDUCTION (SCR) AND WATER INJECTION	0.01	LB/MMBTU	3 HR ROLLING AVERAGE	,	PPMVD	3 HR ROLLING AVERAGE	l.		
155-0074	WEST DEFTFORD ENERGY	3/0/2009		UAS	1/290	IVINIT 13/1K	Natural Gas Usage ← 33,691 MMft^3/yr	EVILC TRUN	0.01	LO/MINISTU	AVERAGE	-	CEMVD	AVERAGE		+	†
	PSEG FOSSIL LLC		Combined Cycle Combustion Turbine				per 365 consecutive day period, rolling one day basis (per two turbines and two duct				3-HR ROLLING			AVERAGE OF			
	SEWAREN GENERATING		-Siemens turbine				burners)	Selective Catalytic Reduction and Dry			AVE BASED ON			THREE ONE			
*NJ-0081	STATION	3/7/2014	without Duct Burner COMBINED	Natural gas	33691	MMCubic ft/yr	The heat input rate of each Siemens combustion turbine will be 2,356 MMBtu/hr(HHV)	Low NOx	2	PPMVD	1-HR BLOCK	19	fb/hr	HOUR TESTS	0	+	+
			CYCLE COMBUSTION TURBINE WITHOUT DUCT				Natural Gas Usage ← 33,691 MMfr ² 3/yr per 365 consecutive day period, rolling one day basis (net two turbines and two duet										
	PSEG FOSSIL LLC		BURNER -				burners)				3-HR ROLLING		1	AVERAGE OF			
*NJ-0081	SEWAREN GENERATING STATION	3/7/2014	GENERAL ELECTRIC	Natural C	33691	MMCF/YR	The heat input rate of each General Electric combustion turbine will be 2,312	Selective Catalytic Reduction System (SCR) and Dry Low NOx	,	PPMVD	AVERAE BASED ON 1-HR BLOCK	16.9	lls/her	THREE ONE- HOUR TESTS	l.		
140-0081	STATION	317/2014	ELECTRIC	Natural Gas	23091	IMINICE/ I K	MMBtu/hr(HHV) This is a 427 MW Siemens Combined Cycle Turbine with duct burner	HOCK/ and Dry Low NOX	_	LUMAD	ON 1-DR BLUCK	10.6	4D/III	HOUR TESTS			—
			Combined Cycle				Heat Input rate of the turbine = 2276 MMbtu/hr (HHV) Heat Input rate of the Duct burner= 777 MMbtu/hr(HHV)	Selective Catalytic Reduction System			3-HR ROLLING			3-HR ROLLING			
	WEST DEPTFORD ENERGY		Combustion Turbine					(SCR) and use of natural gas a clean			AVE BASED ON			AVE BASED ON			
*NJ-0082	STATION	7/18/2014	without Duct Burner	Natural Gas	20282	MMCF/YR	The fuel use of 20,282 MMCF/YR is for three turbines and three Duct burner.	burning fuel	2	PPMVD	1-HR BLOCK	17.33	lb/hr	1-HR BLOCK	0		

		PERMIT ISSUANCE		PRIMARY				CONTROL METHOD	EMISSION		AVG TIME	EMISSION		AVGTIME	STANDARAD		AVG TIME
RBLCID	FACILITY NAME	DATE	PROCESS NAME	FUEL	THROUGHPUT	THROUGHPUT UNIT	PROCESS NOTES	DESCRIPTION	LIMIT 1	UNIT	CONDITION	LIMIT 2	UNIT	CONDITION	EMISSION LIMIT	UNIT	CONDITION
	ATHENS GENERATING		FUEL COMBUSTION	NATURAL			CATYALYTIC REDUCTION (SCR.) FOR NOX EMISSION CONTROL. NOX EMISSIONS FROM THE TURBINES ARE ADDITIONALLY CONTROLLED BY AMMONIUM	REDUCTION WITH AMMONIUM			3 HOUR BLOCK AVAEAGE/STEA			3 HOUR BLOCK AVAEAGE/STEA		PPMVD @ 15%	3 HOUR BLOCK AVAEAGE/STEA
NY-0098	PLANT	1/19/2007	(GAS) FUEL	GAS	3100	MMBTU/H	HYDROXIDE INJECTION.	HYDROXIDE INJECTION. DRY LOW NOX COMBUSTION TECHNOLOGY IN COMBINATION	2	PPMVD	DY STATE 3-HOUR BLOCK	23.4	lb/hr	3-HOUR BLOCK	2	02	DY STATE 3-HOUR BLOCK
NY-0100	EMPIRE POWER PLANT	6/23/2005	COMBUSTION (NATURAL GAS)	NATURAL GAS	2099	MMBTU/H	Two Mitsubishi 2932 MMBtwH combined cycle combustion turbines . both with 300	WITH SELECTIVE CATALYTIC REDUCTION (SCR) SYSTEM	2	PPMVD	AVE./ STEADY STATE	14.59	lb/hr	AVE/STEADY STATE	2	PPMVD AT 15% O2	AVE / STEADY STATE
	OREGON CLEAN ENERGY		2 Combined Cycle Combustion Turbines-Siemens.			MMSCF/rolling 12-	MMBtu ^H duet burners, with dry low NOx combustors, SCR, and catalytic oxidizer. Will install either 2 Siemens or 2Mitsubishi, not both (not determined). Short term limits are different with and without duet burners.	selective catalytic reduction (SCR); dry low NOx combustors; lean fuel						PER ROLLING 12			PPMVD AT 15%
*OH-0352	CENTER CENTER	6/18/2013	without duct burners	Natural Gas	515600	months	Short term limits are different with and without duct burners. This process without duct burners. Two Misuhishi 2932 MMRu/H combined cycle combustion turbines, both with 300	technology	22	lb/hr		92	T/YR	MONTHS 12	2	PPM	O2 15%
*OH-0352	OREGON CLEAN ENERGY CENTER	6/18/2013	2 Combined Cycle Combustion Turbines-Mitsubishi without duct burners	, Natural Gas	47917	MMSCF/rolling 12-MO	MMBtu/H duct burners, with dry low NOx combustors, SCR, and catalytic oxidizer. Will install either 2 Siemens or 2Mitsubishi, not both (not determined). Short term limits are different with and without duct burners.	selective catalytic reduction (SCR); dry low NOx combustors; lean fuel technology	22.6	lb/hr		94.8	T/YR	PER ROLLING 12 MONTHS	2	PPM	PPMVD AT 15% O2
	DUKE ENERGY HANGING		Turbines (4) (model GE 7FA) Duct	NATURAL			This process without duct burners. Four GE 7FA combined cycle turbines, dry low NOx burners and selective catalytic reduction. These limits are for each of the 4 turbines individually, while operating with the duct burners off. This permit is a modification to RBLC OH-0252 to remove hourly restrictions on duct	Dry Low NOx burners and Selective						PER ROLLING 12			PPMVD AT 15% O2 ON 3-H BLOCK
*OH-0356	PSO SOUTHWESTERN	12/18/2012	Burners Off GAS-FIRED	GAS	172	MW	burners.	Catalytic Reduction	21.1	lb/hr		120.9	T/YR	MONTHS	3	PPM	AVERAGE
OK-0117	POWER PLT	2/9/2007	TURBINES COMBINED CYCLE					DRY LOW NOX	9	PPMVD		0			0		
OK-0129	CHOUTEAU POWER PLANT	1/23/2009	COGENERATION >25MW COMBINED	NATURAL GAS	1882	MMBTU/H	SIEMENS V84.3A	SCR AND DRY LOW-NOX	2	PPMVD	1-H AVG @ 15% O2	15.25	lb/hr	1-H AVG	0		
			COMBINED CYCLE NATURAL GAS-FIRED ELECTRIC GENERATING	NATURAL				SELECTIVE CATALYTIC			3-HOUR						
OR-0048	CARTY PLANT	12/29/2010	UNIT	GAS	2866	MMBTU/H	The Permittee shall select and install any of the turbine options listed below (or newer versions	REDUCTION (SCR)	2	PPMVD	3-HOUR ROLLING	0			0		
			COMBINED				of these turbines if the Department determines that such newer versions achieve equivalent or better emissions rates and exhaust parameters) 1. General Electric PFA (GE PFA) 2. Siemens SGT6-5000 FG (Mistashish G) Mistashish MS010 (Mistashish G)				WITH OR			INCLUDING START UP AND			
*PA-0291	HICKORY RUN ENERGY STATION	4/23/2013	CYCLE UNITS #1 and #2	Natural Gas	3.4	MMCF/HR	Siemens SGT6-8000H (Siemens H) The emissions listed are for the Siemens SGT6-8000H unit.	SCR	2	PPMVD	WITHOUT DUCT BURNER	17.25	T/YR	SHUR DOWN	0		
*PA-0296	BERKS HOLLOW ENERGY ASSOC LLC/ONTELAUNEE	12/17/2013	Turbine, Combined Cycle, #1 and #2	Natural Gas	3046	MMBtu/hr	Equipped with SCR and Oxidation Catalyst	SCR	131.6	T/YR	12-MONTH ROLLING TOTAL	0			0		
TX-0516	CITY PUBLIC SERVICE JK SPRUCE ELECTRICE GENERATING UNIT 2	12/28/2005	SPRUCE POWER GENERATOR UNIT NO 2						1600	lb/hr		1752	T/YR		0		
TX-0546	PATTILLO BRANCH POWER PLANT	6/17/2009	ELECTRICITY GENERATION	NATURAL GAS	350	MW	EACH TURBINE-HRSG WILL BE DESIGNED TO OUTPUT 350 MW. TURBINES BEING CONSIDERED FOR THE PROJECT ARE GE 7FA, GE 7FB, AND SIEMENS SGT6- 5000F.	SELECTIVE CATALYTIC REDUCTION	2	PPMVD	@ 15% O2 24-HF ROLLING AVG	0			0		
							The plant will be designed to generate 1,350 nominal megawatts of power. There are two configuration scenarios: either four Siemens SGT6-5000F CTGs in combined-cycle mode (Scenario A) or four GE Frame TFA CTGs in combined cycle mode (Scenario B). Scenario B				1-HOUR						
TX-0590	KING POWER STATION	8/5/2010	Turbine	natural gas	1350	MW	also includes one or two auxiliary boilers. (2) GF7FA at 19 MW each, (1) steam turbine at 200 MW.	DLN burners and SCR	2	PPMVD	AVERAGE ROLLING 24-HR	0			0		
TX-0600	THOMAS C. FERGUSON POWER PLANT	9/1/2011	Natural gas-fired turbines	natural gas	390	MW	Each turbine is equipped with an unfired heat recovery steam generator (HRSG), which provides steam for the steam turbine.	Dry low NOx burners and Selective Catalytic Reduction	2	PPMVD	AT 15% OXYGEN	0			0		
			Combined cycle gas				The three combustion turbine generators (CTG) will be the General Electric 7FA, each with a maximum base-load electric power output of approximately 195 megawatts (MW). The steam turbine is rated at approximately 235 MW. This project also includes the installation of two				@15% O2, 24-HR						
TX-0620	ES JOSLIN POWER PLANT	9/12/2012	turbine	natural gas	195	MW	emergency generators, one fire water pump, and auxiliary equipment. No duct burners.	Selective catalytic reduction	2	PPMVD	ROLLING AVG CORRECTED TO	0		+	0		+
*TX-0660	FGE TEXAS POWER I AND FGE TEXAS POWER II	3/24/2014	Alstom Turbine	Natural Gas	230.7	MW	Four (4) Alstom GT24 CTGs, each with a HRSG and DBs, max design capacity 409 MMBtu/hr	Selective catalytic reduction	2	PPMVD	15% O2, ROLLING 24 HR AVE	0			0		
*TX-0678	FREEPORT LNG PRETREATMENT FACILITY		Combustion Turbine	natural gas	87	MW	The exhaust heat from the turbine will be used to heat a heating medium which is used to regenerate rich amine from the acid gas removal system.	Selective Catalytic Reduction	2	PPMVD	15@ O2, 3 HOUR ROLLING AVERAGE	0			0		
*TX-0689	CEDAR BAYOU ELECTRIC GENERATION STATION	8/29/2014	Combined cycle natural gas turbines	Natural Gas	225	MW	- HAND	DLN, SCR	2	PPMVD	24HR ROLLING AVG.	0					
			(4) cogeneration		00	MW	(A) CF TFA Ali	DLN and Closed Loop Emissions			@15% O2, 3-HR ROLLING						
*TX-0698	SAND HILL ENERGY	9/5/2013	Natural gas-fired	natural gas	90	INIW	(4) GE 7EA turbines providing power and process steam	Controls (CLEC)	,	PPMVD	AVERAGE	0			10		+
*TX-0709	SAND HILL ENERGY CENTER	9/13/2013	combined cycle turbines	Natural Gas	173.9	MW	The facility will consist of a Mitsubishi Heavy Industries (MHI) J model gas fired combustion	SCR	2	PPMVD	24HR ROLLING AVG.	0	-		0		
*TX-0712	TRINIDAD GENERATING FACILITY	11/20/2014	combined cycle turbine	natural gas	497	MW	turbine nominally rated at 497 megawatts (MW) equipped with a HRSG and DB with a maximum design capacity of 402 million British thermal units per hour (MMBtu/hr). The gross nominal output of the CTG with HRSG and DB is 530 MW.	Selective Catalytic Reduction	2	PPMVD	@15% O2, 24-HR ROLLING AVERAGE	0			0		
ATTV 0	COLORADO BEND ENERGY		Combined-cycle gas turbine electric	1	1100		combined cycle power plant that uses two combustion turbines and one steam turbine, model	acon I III		pp. 47.	24 110 :						
*TX-0730	CENTER	4/1/2015	generating facility COMBINED CYCLE TURBINE	natural gas	1100	MW	GE 7HA.02	SCR and oxidation catalyst Two-stage, lean pre-mix dry low-NOx combustor and a selective catalytic	2	PPMVD	24-HR AVERAGE	U		ONE HOLD	U		<u> </u>
VA-0315	WARREN COUNTY POWER PLANT - DOMINION	12/17/2010	& amp; DUCT BURNER, 3 COMBUSTION	Natural Gas	2996	MMBTU/H	Emissions are for one of three units (Mitsubishi natural gas-fired combustion turbine (CT) generator, Model M501 GAC).	reduction (SCR) control system using ammonia injection.	2	PPMVD	ONE HOUR AVERAGE	25.3	lb/hr	ONE HOUR AVERAGE	0		
*VA-0321	BRUNSWICK COUNTY POWER STATION	3/12/2013	TURBINE GENERATORS, (3)	Natural Gas	3442	MMBTU/H	Three (3) Mitsubishi M501 GAC combustion turbine generators with HRSG duct burners (natural gas-fired).	Selective catalytic reduction and ultra low NOx burners.	2	PPMVD @ 15% O2	l H AVG	0			0		

RBLCID	FACILITY NAME	PERMIT ISSUANCE DATE	PROCESS NAME	PRIMARY	THROUGHPUT	THROUGHPUT UNIT	BRACESS NOTES	CONTROL METHOD DESCRIPTION	EMISSION LIMIT 1	UNIT	AVG TIME CONDITION	EMISSION LIMIT 2	UNIT	AVG TIME CONDITION	STANDARAD EMISSION LIMIT	UNIT	AVG TIME CONDITION
KBLCID	FACILITY NAME	DATE	Large combustion	FUEL	THROUGHPUT	THROUGHPUT UNIT	Throughput and Units above are for the GEF7.05.	DESCRIPTION	LIMIT	UNII	CONDITION	LIMIT 2	UNII	CONDITION	EMISSION LIMIT	UNII	CONDITION
	GREEN ENERGY		turbines				Throughput and Onits above are for the GEF 7.03.	Selective Catalytic Reduction (SCR),									
	PARTNERS/ STONEWALL,		(>25MW) CCT1				Siemens SGTF-5000F5:	with ammonia injection and dry low NOx									
*VA-0322	LLC	4/30/2013	and CCT2	Natural Gas	2.23	MMBTU/hr	Throughput: 2.260 MMBTU/hr	combusion.	0			0			0		
	CHEYENNE PRAIRIE		Combined Cycle											30-DAY ROLLING			
*WY-0070	GENERATING STATION	8/28/2012	Turbine (EP01)	Natural Gas	40	MW		SCR	3	PPMVD	1-HOUR	4.6	lb/hr	AVERAGE	25.5	T/YR	
														30-DAY			
	CHEYENNE PRAIRIE		Combined Cycle			l								ROLLING AVERAGE			
*WY-0070	GENERATING STATION	8/28/2012	Turbine (EP02)	Natural Gas	40	MW		SCR	3	PPMVD	1-HOUR 3-hour block	4.6	lb/hr	3-hour block	25.5	T/YR	+
											average; Duct			average; Duct			
	Astoria Energy LLC		Combustion Turbine	Natural Gas	1000	MW		SCR/Low NOx Burners	2	PPMVD	Burners Off	15.6	lb/hr	Burners Off			
								Pipeline quality low sulfur NG; DLN combustion design; Low NOx burners;									
	Catoctin Power LLC		Combustion Turbine	Natural Gas	170	MW		SCR	2	PPMVD	Duct Burners Off						
	Footprint Power Salem Harbor										1-hr average; Duct			1-hr average; Duct			
	Development LP		Combustion Turbine	Natural Gas	346	MW		SCR/Low NOx Burners	17	lb/hr	Burners Off	0.0074	lb/MMBtu	Burners Off			
	Footprint Power Salem Harbor Development LP		Combonian Tookina	Notes I Con	246	MW		SCR/Low NOx Burners	2	PPMVD	1-hr average; Duct Burners Off	0.051	lb/MW-hr	1-hr average; Duct Burners Off			
	Development LF		Combustion Turbine	Naturai Gas	340	WIW		SCR/Low NOX Burners	2	FFMVD	Burners Off	0.031	ID/M W-III	Burners On			+
	Kalama Energy Center		Combustion Turbine	Natural Gas	2247	MMBtu/hr		SCR	2	PPMVD	1-hr average	18.5	lb/hr	1-hr average			
	r. r. c.				2247	MMBtu/hr		SCR		DD1 (I ID	20.1	102.4	T/YR	l.,			
	Kalama Energy Center	1	Combustion Turbine	ivaturai Gas	224/	www.Btu/nr		SUR	13	PPMVD	30-day average	102.4	1/1K	12-mo rolling	 		+
	GenConn Middletown LLC		Combustion Turbine	Natural Gas	474.9	MMBtu/hr			2.5	PPMVD			1	1			
	PacifiCorp Energy		Block 1 CT	Natural Gas					2	PPMVD	3-hour	14.9	lb/hr				$\overline{}$
	PacifiCorp Energy	-	Block 2 CT	Natural Gas	629	MW		+	2	PPMVD	3-hour	14.9	lb/hr	+	-		+
	Pioneer Valley		Combustion Turbine	Natural Gas	387	MW			2	PPMVD	1-hr average		1	1			
	Pioneer Valley		Combustion Turbine	Natural Gas	387	MW			40	PPMVD							
	Russell City Energy Company,		Combustion Turbine	Notes I Con	2038.6	MMBtu/hr			2	PPMVD	1 1						
	Sevier Power Company Power		Combustion Turbine	Naturai Gas	2038.6	MMBtu/hr			 	PPMVD	1-hr average			+		1	+
	Plant		Combustion Turbine	Natural Gas	580	MW			2	PPMVD	3-hr average						
	CPV Valley Energy Center								_								
	Wawayanda, NY Woodbridge Energy Center			Natural Gas	630	MW			2	PPMVD	3-hr average						+
	(CPV Shore, LLC)			Natural Gas	2307	MMBtu/hr			2	PPMVD							
	PA STATE UNIV/UNIV PARK CAMPUS		COMBINED HEAT AND POWER DUAL-FIRED COMBUSTION TURBINE	Natural Gas	86.29	MMBtu/hr			15	PPMVD							
									_								
	Hummel Station LLC		Combustion Turbine	Natural Gas	2254	MMBtu/hr			2	PPMVD		18.4	lb/hr				+
	Cricket Valley Energy Center		Combustion Turbine	Natural Gas	1000	MW			2	PPMVD	1-hr average						
	Effingham County Power Gibson County Generation,		Combustion Turbine	Natural Gas	180	MW			2	PPMVD	3-hr average		-				+
	LLC		Combustion Turbine	Natural Gas	417	MW			2	PPMVD	24-hr average	0.0073	lb/MMBtu				
																	_
	Pioneer Valley Energy Center	-	Combustion Turbine	Natural Gas	2542	MMBtu/hr			2	PPMVD		20.2	lb/hr		-		+
	McDonough-Atkinson Steam-										30 day rolling		1	1			
	Electric Generating Plant			Natural Gas					6	PPMVD	average						
	Russell City Energy Company,				I	I						16.5	T				
	LLC		Combustion Turbine	Natural Gas	2038.6	MMBtu/hr			2	PPMVD	1-hour	16.5	lb/hr	1	-		+
	Tenaska Partners LLC		Combustion Turbine	Natural Gas	3147	MMBtu/hr			2	PPMVD		26.5	lb/hr	1			
	UGI Development Co/ Hunlock																
	Creek		Combustion Turbine		471.2	MMBtu/hr MW		+	2.5	PPMVD lb/MMBtu	2 h	185.64	T/YR		-		+
	Hawkeye Generating, LLC		+	Natural Gas	013	NI W		+	0.011	io/MMBtu	3-hr rolling	163.64	I/TR	+	 	 	+
	Hess Newark Energy Center		Combustion Turbine	Natural Gas	2320	MMBtu/hr			2	PPMVD	3-hr rolling	0.0073	lb/MMBtu				
											3-hour average,						
	York Energy Center Block 1		1		1574	MMBtu/hr		+	2	PPMVD	rolling by 1-hour 3-hour block		1	+	1		+
											average; average of		1	1			
	York Energy Center Block 2	6/15/2015			2512.5	MMBtu/hr	firing NG without duct burner		2	PPMVD	3 test runs						
	Shell Chemical																
	Appalachia/Petrochemicals Complex	6/18/2015			664	MMBtu/hr	each turbine/duct burner		2	PPMVD	1-hour average	lb/br	1	1			
	Calpine/Bethlehem Energy	0.10.2013			007		Calculations and countil		ľ		- nous average	normal .					1
	Center				122	MW			2.5	PPMVD PPMVD							
	Liberty Electric Power, LLC	1			1954	MMBtu/hr	Without DB	1	3.5	PPMVD		l	1	1		1	

		PERMIT ISSUANCE		PRIMARY				CONTROL METHOD	EMISSION		AVG TIME	EMISSION		AVG TIME	STANDARAD		AVG TIME
RBLCID	FACILITY NAME KILLINGLY ENERGY	DATE	PROCESS NAME Natural Gas w/Duct		THROUGHPUT	THROUGHPUT UNIT		DESCRIPTION	LIMIT 1	UNIT	CONDITION	LIMIT 2	UNIT	CONDITION	EMISSION LIMIT	UNIT	CONDITION
T-0161	CENTER	6/30/2017	Firing	Natural Gas	2639	MMBtu/hr	Duct burner MRC is 946 MMbtu/hr	Oxidation Catalyst	1.7	LB/MMBTU	1 HOUR BLOCK	0			0		
								Catalytic Oxidation and good combustion	1								
	ST. CHARLES POWER		SCPS Combined					practices during normal operations, and good combustion practices during			HOURLY			ANNUAL			24-HOUR ROLLING
.A-0313	STATION	8/31/2016	Cycle Unit 1A	Natural Gas	3625	MMBTU/hr		startup/shutdown operations.	125.21	LB/H	MAXIMUM	388.55	T/YR	MAXIMUM	2	PPM@15% O2	AVERAGE
								Catalytic oxidation and good combustion									
								practices during normal operations, and									24-HOURLY
.A-0313	ST. CHARLES POWER STATION	8/31/2016	SCPS Combined Cycle Unit 1B	Natural Gas	3625	MMBTU/hr		good combustion practices during startup/shutdown operations.	125 21	LB/H	HOURLY MAXIMUM	388.55	T/YR	ANNUAL MAXIMUM	2	PPM@15% O2	ROLLING AVERAGE
			Cycle Unit 1B FG-TURB/DB1-3 (3														
			combined cycle combustion turbine				Three (3) combined-cycle combustion turbine (CT) / heat recovery steam generator (HRSG)										
	NEW COVERT		and heat recovery				trains. Each CT is a natural gas fired Mitsubishi model 501G, equipped with dry low NOx combustor and inlet air evaporative cooling. Each HRSG includes a natural gas fired duct				EACH CT/HRSG			EACH CT/HRSG TRAIN; 12-MO			
MI-0432	GENERATING FACILITY	7/30/2018	steam generator trains)	Natural gas	1230	MW	burner with a 256 MMBtu/hr heat input capacity and a dry low NOx burner.	Oxidation catalyst technology and good combustion practices.	2	PPMVD	TRAIN; 24-HR ROLL AVG	357	T/YR	ROLL TIME PER	L 0		
			EUCTGHRSG (South Plant): A				A combined-cycle natural gas-fired combustion turbine generator (CTG) with heat recovery										
			combined cycle				steam generator (HRSG) in a 1x1 configuration with a steam turbine generator (STG) for a										
			natural gas-fired combustion turbine				nominal 500 MW electricity production. The CTG is a H-class turbine with a rating of 3,080 MMBTU/H (HHV). The HRSG is equipped with a natural gas-fired duct burner rated at 755							OPERATING HR			
			generator with heat				MMBTU/H (HHV) at ISO conditions to provide heat for additional steam production. The				AT 15%O2;			DURING	•		
MI-0433	MEC NORTH, LLC AND MEC SOUTH LLC	6/29/2018	recovery steam generator.	Natural gas	500	MAN	HRSG is not capable of operating independently from the CTG. The CTG/HRSG is equipped with dry low NOx burner (DLNB), SCR and an oxidation catalyst.	Oxidation catalyst technology and good	١,	PPMV	240HR ROLL AVG: NOT S.S.	700 6	I D.II	STARTUP OR SHUTDOWN	0		
NII-0433	MEC SOUTH LLC	6/29/2018	generator.	Naturai gas	300	MW		combustion practices.	-	FFMV	AVG; NOT S.S.	788.0	LB/H	SHUIDOWN	0		
		1					Nominal 500 MW electricity production. Turbine rating of 3,080 MMBTU/hr (HHV) and HRSG duct burner rating of 755 MMBTU/hr (HHV).							1			
		1	EUCTGHRSG											1			
		1	(North Plant): A combined-cycle				A combined-cycle natural gas-fired combustion turbine generator (CTG) with heat recovery steam generator (HRSG) in a 1x1 configuration with a steam turbine generator (STG) for a							1			
		1	natural gas-fired				nominal 500 MW electricity production. The CTG is a H-class turbine with a rating of 3,080										
			combustion turbine generator with heat				MMBTU/hr (HHV). The HRSG is equipped with a natural gas-fired duct burner rated at 755 MMBTU/hr (HHV) at ISO conditions to provide heat for additional steam production. The				AT 15%O2; 24-H			OPERATING HR DURING			
	MEC NORTH, LLC AND		recovery steam				HRSG is not capable of operating independently from the CTG. The CTG/HRSG is equipped	Oxidation catalyst technology and good			ROLL AVG; NOT			STARTUP OR			
MI-0433	MEC SOUTH LLC	6/29/2018	generator.	Natural gas	500	MW	with dry low NOx burner (DLNB), SCR, and an oxidation catalyst.	combustion practices.	4	PPMVD	INCL ST/SH	788.6	LB/H	SHUTDOWN	0		
							1. ONE GENERAL ELECTRIC (GE) 7HA.02 CCCT NOMINALLY RATED AT 380 MW AT ISO CONDITIONS WITHOUT DUCT FIRING WITH A MAXIMUM HEAT INPUT										
							AT ISO CONDITIONS WITHOUT DUCT FIRING WITH A MAXIMUM HEAT INPUT RATE OF:										
							O 3,462 MMBTU/HR(HHV) AT (0) DEGREES F, 100% LOAD COMBUSTING										
							NATURAL GAS O 3,613 MMBTU/HR(HHV) AT (0) DEGREES F, 100% LOAD COMBUSTING ULSD										
							WHICH WILL BE THE BACKUP FUEL										
							OTHER EQUIPMENT INCLUDES: 2. ONE NATURAL GAS-FIRED DUCT BURNER (MAXIMUM HEAT INPUT OF 599										
							MMBTU/HR(HHV)) FOR SUPPLEMENTAL FIRING.										
							3. ONE 97.5 MMBTU/HR(HHV) NATURAL GAS FIRED AUXILIARY BOILER, EQUIPPED WITH LOW NOX BURNERS AND FLUE GAS RECIRCULATION FOR										
							CONTROL OF NOX EMISSIONS:										
							4. ONE 2.25 MMBTU/HR(HHV), 327 BRAKE HORSEPOWER, ULSD FIRED										
			Combined Cycle				EMERGENCY FIRE PUMP; 5. ONE 14.4 MMBTU/HR(HHV), APPROXIMATELY 1,500 KW ULSD FIRED							AV OF THREE			
			Combustion Turbine				EMERGENCY GENERATOR; AND				3 H ROLLING A	v		ONE H STACK			
NJ-0085	MIDDLESEX ENERGY CENTER, LLC	7/19/2016	firing Natural Gas with Duct Burner	natural ass	4000	h/or	6. ONE 8-CELL, 124,800 GALLON PER MINUTE (GPM) MECHANICAL INDUCED DRAFT COOLING TOWER.	Oxidation Catalyst and good combustion	,	PPMVD@15%O2	BASED ON ONE H BLOCK AV	18 1	I R/H	TESTS EVERY 5	0		
0 0000	TENASKA PA	371372010		Intuition gass	1000	12.71	Dict I Coolaid Toward	practices		11.11110(0,137002	III DEGCICAL	10.1	2221				
PA-0306	PARTNERS/WESTMORELA ND GEN FAC	2/12/2016	Large combustion turbine	Natural Gas	0		This process entry is for operations with the duct burner. Limits entered are for each turbine	Oxidation Catalyst and good combustion	15.9	I.B/HR	3 HR AVERAGE	318.6	TPV	12 MONTH ROLLING BASIS	. 0		
							This process entry is for operations with the duct burner. Limits entered are for each turbine. Emission limits are for each turbine operating with duct burner and do not include										
							startup/shutdown emissions. Tons per year limits is a cumulative value for all three CCCT. CEMS for NOx, CO, and O2.										
							Each CCCT and duct burner have 5 operational scenarios:										
							CCCT with duct burner fired - fueled by NG only CCCT with duct burner fired - fueled by NG blend with ethane										
			Combustion turbine				3 CCCT without duct burner fired - fueled by NG only	Oxidation catalyst operated at all steady									
PA-0310	CPV FAIRVIEW ENERGY CENTER	9/2/2016	and HRSG with due burner NG only	Natural Gas	3338	MMBtu/hr	4 CCCT without duct burner fired - fueled by NG blend with ethane 5 CCCT without duct burner fired - fueled by ULSD (Limited to emergency use only)	state operating loads and good combustion practices	2	PPMDV @ 15% O2		84.9	TONS	YEAR	0		
								· ·			30 UNIT-			15 UNIT-			
	JOHNSONVILLE	1	Natural Gas-Fired Combustion Turbine				Turbine throughput is 1019.7 MMBtu/hr when burning natural gas and 1083.7 MMBtu/hr when burning No. 2 oil. Duct burner throughput is 319.3 MMBtu/hr. Duct burner firing will	Good combustion design and practices,		PPMVD @ 15%	OPERATING- DAY MOVING		PPMVD @ 15%	OPERATING- DAY MOVING			
ΓN-0162	COGENERATION	4/19/2016	with HRSG	Natural Gas	1339	MMBtu/hr	occur during natural gas combustion only.	oxidation catalyst	2	02	AVERAGE	10	02	AVERAGE	0		
		1	Combined Cycle Turbine with Heat														
		1	Recovery Steam														
		1	Generator, fired Duct Burners, and														
F11 001 -	GAINES COUNTY POWER	4000015	Steam Turbine	NATURAL		Leny.	Four Siemens SGT6-5000F5 natural gas fired combustion turbines with HRSGs and Steam	Selective Catalytic Reduction (SCR) and		nn. a.r.	150/ 05 5 5 5			1			
TX-0819	PLANT	4/28/2017	Generator COMBUSTION	UAS	426	MW	Turbine Generators	Dry Low NOx burners	12	PPMVD	15% O2 3-H AVO	1 0	+		U		
		1	TURBINE GENERATOR											1			
			WITH DUCT-	1													
		1	FIRED HEAT														
	GREENSVILLE POWER	1	RECOVERY STEAM											12 MO ROLLING	ì		
VA-0325	STATION	6/17/2016	GENERATORS (3)	natural gas	3227	MMBTU/HR	3227 MMBTU/HR CT with 500 MMBTU/HR Duct Burner, 3 on 1 configuration.	Oxidation Catalyst	1.6	PPMVD	3 HR AVG	286	TONS/YR	AVG	0		
	HARRISON COUNTY	1					Nominal 640 mWe All emission limits steady-state and include 1000 mmBtu/hr Duct Burner in operation	Oxidation Catalyst, Good Combustion			1-HOUR			1			
WV-0029	POWER PLANT	3/27/2018	GE 7HA.02 Turbine	Natural Gas	3496.2	mmBtu/hr	Short Term startup and shutdown limits in lb/event given in permit.	Practices	20	LB/HR	AVERAGE	124	TONS/YEAR	+	2	PPM	
CA-1144	BLYTHE ENERGY PROJECT	4/25/2007	2 COMBUSTION TURBINES	NATURAL GAS	170	MW	EACH TURBINE WILL PRODUCE 170 MW		4	PPMVD	AT 15% O2, 3-HI AVG	18	lb/hr		0		
			COMBUSTION TURBINE #2														
		1	(NORMAL											1			
	LICOTORUM LE A LINES	1	OPERATION,								@15% O2, 1-HR						
CA-1191	VICTORVILLE 2 HYBRID POWER PROJECT	3/11/2010	WITH DUCT BURNING)	NATURAL GAS	154	MW	154 MW Combined Cycle Combustion Turbine Generator	OXIDATION CATALYST SYSTEM	3	PPMVD	AVG (W/ DUCT BURNING)	13.35	lb/hr	1-HR AVG (W/ DUCT BURNING	0		
			,		1.00				r-	,	,		1	, DOM: NINC	4.		

RBLCID	FACILITY NAME	PERMIT ISSUANCE DATE	PROCESS NAME	PRIMARY FUEL	THROUGHPUT	THROUGHPUT UNIT PROCESS NOTES	CONTROL METHOD DESCRIPTION	EMISSION LIMIT 1	UNIT	AVG TIME CONDITION	EMISSION LIMIT 2	UNIT	AVG TIME CONDITION	STANDARAD EMISSION LIMIT	UNIT	AVG TIME CONDITION
			COMBUSTION TURBINE #1													
			(NORMAL OPERATION,													
CA-1192	AVENAL ENERGY PROJECT	6/21/2011	WITH DUCT BURNING)	NATURAL GAS	180	MW	OXIDATION CATALYST SYSTEM	2	PPMVD	@15% O2, 1-HR AVG	10	lb/hr	1-HR AVG	0		
			COMBUSTION TURBINE													
			GENERATOR, 2 units (Normal	NATURAL		Each CTG system will generate 166 MW under design ambient conditions with steam power				@15% O2, 1-HR						
CA-1195	ELK HILLS POWER LLC	1/12/2006	Operation) COMBUSTION	GAS	166	MW augmentation from the duct burners, and 153 MW without steam augmentation.	SCR OR SCONOX	4	PPMVD	AVG	12.5	lb/hr	1-HR AVG	0		
			TURBINE GENERATORS													
CA-1209	HIGH DESERT POWER PROJECT	3/11/2010	(NORMAL OPERATION)	NATURAL GAS	190	THREE (3) COMBUSTION TURBINE GENERATORS AT 190 MW EACH AND MW EQUIPPED WITH A 160 MMBTU/HR DUCT BURNER AND HRSG	OXIDATION CATALYST SYSTEM	4	PPMVD	@15% O2, 24-HR AVG	17.53	lb/hr	24-HR AVG	0		
			COMBUSTION TURBINES													
CA-1211	COLUSA GENERATING STATION	3/11/2011	(NORMAL OPERATION)	NATURAL GAS	172	TWO (2) NATURAL GAS FIRED TURBINES AT 172 MW EACH. BOTH TURBINES MW EQUIPPED WITH A 688 MMBTU/HR DUCT BURNER AND HRSG.	CATALYTIC OXIDATION SYSTEM	3	PPMVD	@15% O2, 3-HR ROLLING AVG	17.9	lb/hr	3-HR ROLLING AVG	0		
			NATURAL-GAS FIRED,				USE GOOD COMBUSTION CONTROL									
O-0056	ROCKY MOUNTAIN ENERGY CENTER, LLC	5/2/2006	COMBINED- CYCLE TURBINE	NATURAL GAS	300	ONE NEW COMBINED-CYCLE TURBINE IS BEING ADDED TO AN EXISTING MW FACILITY.	PRACTICES AND CATALISTIC OXIDATION.	3	PPM @ 15% O2		0.044	LB/MMBTU	MONTHLY AV	3	PPM @ 15 O2	
			SIEMENS SGT6-													
			5000F COMBUSTION			THROUGHPUT IS FOR TURBINE ONLY WHEN FIRING NATURAL GAS										
			TURBINE #1 AND #2 (NATURAL			TURRINE: 2136 MMRTI/HR (2 095 MMCE/HR)										
			GAS FIRED) WITH 445 MMBTU/HR			DUCT BURNER: 445 MMBTU/HR (0.436 MMCF/HR)										1 HR-BLOCK
CT-0151	KLEEN ENERGY SYSTEMS,	2/25/2008	NATURAL GAS DUCT BURNER	NATURAL	2.1	EMISSION RATES ARE FOR EACH COMBUSTION TURBINE FIRING NATURAL GAS, MMCF/H NOT COMBINED.	CO CATLYST	4.2	lls/lor	W/OUT DUCT BURNER	9.4	lls/her	W/DUCT BURNER	0.0	PPMVD @ 15 %	(W/OUT DUCT BURNER)
21-0131	NRG ENERGY CENTER	2/23/2006	DOCT BORNER	UAS	2.1	S00 MMBTU/hr Gas Turbine (Model: GE LM6000) rated at 52 MW and 155 MMBTU/hr Heat Recovery Steam Generator rated at 18 MW. The unit is required to operate a certified	COCATETST	4.5	IO III	1 HOUR	0.4	io iii	1 HOUR	0.9	02	BURNER)
DE-0023	DOVER	10/31/2012	UNIT 2- KD1	Natural Gas	655	MMBTU/H CEMS and COMS.	Oxidation Catalyst System	19.54	lb/hr	AVERAGE	0.032	LB/MMBTU	AVERAGE	0		
						GENERATING CAPACITY: EACH OF THE FOUR GAS TURBINES HAS A NOMINAL GENERATING CAPACITY OF 170 MW FOR GAS FIRING (180 MW FOR OIL FIRING).										
						EACH OF THE FOUR HEAT RECOVERY STEAM GENERATORS (HRSGS) PROVIDES STEAM TO THE SINGLE STEAM TURBINE ELECTRICAL GENERATOR, WHICH HAS										
						A NOMINAL CAPACITY OF 470 MW. THE TOTAL NOMINAL GENERATING										
						CAPACITY OF THE 4-ON-1 COMBINED CYCLE UNIT IS 1150 MW.										
						FUELS: EACH GAS TURBINE WILL FIRE NATURAL GAS AS THE PRIMARY FUEL AND ULTRA LOW SULFUR (0.0015% SULFUR) DISTILLATE OIL AS A RESTRICTED										
						ALTERNATE FUEL. EMISSIONS OF ALL POLLUTANTS INCREASE WITH THE FIRING OF OIL. THE APPLICANT REQUESTS 500 HOURS PER YEAR PER GAS										
			170 MW COMBUSTION			TURBINE (OR EQUIVALENT) FOR OIL FIRING.	CO WILL BE MINIMIZED BY THE EFFICIENT COMBUSTION OF			24-HR AVG.			STACK TEST (CT	,		STACK TEST (CT
L-0263	FPL TURKEY POINT POWER PLANT	2/8/2005	TURBINE, 4 UNITS	NATURAL	170	MODES OF OPERATION: STANDARD NORMAL OPERATION, WITH DUCT MW BURNER, POWER AUGMENTATION AND PEAKING.	NATURAL GAS AND DISTILLATE OIL AT HIGH TEMPERATURES	8	PPMVD @ 15 %	TIME (CT & DUCT BURNER)	4.1	PPMVD @ 15 %	NORMAL OPERATION)	7.6	PPM @ 15 % O2	& DUCT BURNER)
L-0265	HINES POWER BLOCK 4	6/8/2005		NATURAL GAS	530	MW	GOOD COMBUSTION	8	PPM	NATURAL GAS	12	PPM	OII.	8	PPM @ 15% O2	
			COMBINED CYCLE													
	PROGRESS BARTOW		COMBUSTION TURBINE	NATURAL		1876 MMBTU/HR WHEN FIRING DISTILLATE FUEL OIL. THE SYSTEM NOMINAL CAPACITY 1280 MW. EACH UNIT NOMINAL CAPACITY				24-HR BLOCK						
L-0285	POWER PLANT	1/26/2007	SYSTEM (4-ON-1)		1972		GOOD COMBUSTION	8	PPMVD	AVERAGE CEMS	0			0		
						EACH COMBINED CYCLE UNIT SYSTEM (TWO ''3-ON-1'')										
						WILL CONSIST OF: THREE NOMINAL 250 MEGAWATT MODEL 501 G AS TURBINE-ELECTRICAL GENERATOR SETS WITH EVAPORATIVE INLET COOLING										
						SYSTEMS; THREE SUPPLEMENTARY-FIRED HEAT RECOVERY STEAM										
			COMBINED CYCLE			GENERATORS (HRSGÂ;S) WITH SCR REACTORS; ONE NOMINAL 428 MMBTU/HOUR (LHV) GAS-FIRED DUCT BURNER LOCATED WITHIN EACH OF THE										
	FPL WEST COUNTY		COMBUSTION GAS TURBINES -	NATURAL		THREE HRSG¿S; THREE 149 FEET EXHAUST STACKS; ONE 26 CELL MECHANICAL DRAFT COOLING TOWER; AND A COMMON NOMINAL 500 MW										
L-0286	ENERGY CENTER	1/10/2007	6 UNITS	GAS	2333	MMBTU/H STEAM-ELECTRICAL GENERATOR. FUELHEAT INPUT RATE (LHV): OIL2.117 MMBTU/H		8	PPMVD @15%O2	24-HR	0			0		
			THREE NOMINAL			COMBINED CYCLE UNIT 3 WILL CONSIST OF: THREE NOMINAL 250 MW COMBUSTION TURBINE-ELECTRICAL GENERATORS (CTG) WITH EVAPORATIVE										
			250 MW CTG (EACH) WITH			INLET COOLING SYSTEMS; THREE SUPPLEMENTARY-FIRED HEAT RECOVERY STEAM GENERATORS (HRSG) WITH SELECTIVE CATALYTIC REDUCTION (SCR)										
L-0303	FPL WEST COUNTY ENERGY CENTER UNIT 3	7/20/2009	SUPPLEMENTAR Y-FIRED HRSG	NATURAL GAS	2222	REACTORS AND A COMMON NOMINAL 500 MW STEAM-ELECTRICAL MMBTU/H GENERATOR.	GOOD COMBUSTION	6	PPMVD (GAS)	12-MONTH		PPMVD (OIL)	24-HOUR	0		
20303	ENERGY CENTER UNIT 3	775412000	300 MW COMBINED	GAS.		CHARATOR.	GGGD COMBOSTION		mvD(UAS)	.2-WONTH		LIVIYD (OIL)	24HOOR			
	CANE ISLAND POWER		CYCLE COMBUSTION	NATURAL												
L-0304	PARK PARK	9/8/2008	TURBINE COMBINED	GAS	1860	MMBTU/H	GOOD COMBUSTION PRACTICES	6	PPMVD	12-MONTH	8	PPMVD	24-HR	0		
	DI LUTTU GENERALI GIO		CYCLE			6 TURBINES, 254 MW EACH (NOT INCLUDING STEAM RECOVERY), LIMITS ARE			nmam out							
GA-0127	PLANT MCDONOUGH COMBINED CYCLE	1/7/2008	COMBUSTION TURBINE	NATURAL GAS	254	FOR EACH TURBINE (MITSUBISHI MODEL M501G). BACKUP FUEL FOR TWO MW TURBINES IS ULTRA-LOW SULFUR FUEL OIL	OXIDATION CATALYST	1.8	PPMVD @ 15% O2	3-HOUR	0			0		
			L			Four GE 7FA combined cycle turbines, dry low NOx burners and selective catalytic reduction. These limits are for each of the 4 turbines individually, while operating with the duct burners				30-DAY			12-MONTH			
IA-0107	MARSHALLTOWN GENERATING STATION	4/14/2014	Combustion turbine #1 - combined cycle COMBUSTION	natural gas	2258	on. This permit is a modification to RBLC OH-0252 to remove hourly restrictions on duct mmBtu/hr burners.	catalytic oxidizer	2	PPM	ROLLING AVG. @15% O2	552.4	TON/YR	ROLLING TOTAL	0		
			TURBINE,				CATALYTIC OXIDATION (CATOX),									
	LANGLEY GULCH POWER		COMBINED CYCLE W/ DUCT	NATURAL		SIEMENS SGT6-5000F COMBUSTION TURBINE (NGCT, CCGT) FOR ELECTRICAL	DRY LOW NOX (DLN), GOOD COMBUSTION PRACTICES			3-HR ROLLING /			3-HR ROLLING / 15% O2 DURING			1-HR / 15% O2
D-0018	PLANT	6/25/2010	BURNER	GAS (ONLY)	2375.28	MMBTU/H GENERATION, NOMINAL 269 MW AND 2.1466 MMSCF/HR	(GCP)	2	PPMVD	15% O2 HOURLY AVG	24.5	PPMVD	LL	2510	LB/H	DURING SU/SD
			Electric Generation			Two combined cycle combustion turbines followed by HRSGs with capability for supplemental				EXCEPT DURING SSM OR						
						MW each fuel firing in HRSG for each combustion turbine using duct burners.										

RBLCID	FACILITY NAME	PERMIT ISSUANCE DATE	PROCESS NAME	PRIMARY FUEL	THROUGHPUT	THROUGHPUT UNIT		CONTROL METHOD DESCRIPTION	EMISSION LIMIT 1	UNIT	AVG TIME CONDITION	EMISSION LIMIT 2	UNIT	AVG TIME CONDITION	STANDARAD EMISSION LIMIT	UNIT	AVG TIME CONDITION
			FOUR (4) NATURAL GAS COMBINED				EACH TURBINE IS EQUIPED WITH DRY LOW NOX BURNERS, NATURAL GAS FIRED DUCT BURNERS, AND A HEAT RECOVER'S STEAM GENERATOR IDENTIFIED AS HRSG#, NOX EMISSIONS CONTROLLED BY SELECTIVE CATALYTIC REDUCTION SYSTEMS (SCR##) ALONG WITH CO AND VOC										
*IN-0158	ST. JOSEPH ENEGRY CENTER, LLC	12/3/2012	CYCLE COMBUSTION TURBINES	NATURAL GAS	2300	MMBTU/H	EMISSIONS CONTROLLED BY OXIDATION CATAYLST SYSTEMS (CAT##) IN EACH TURBINE. EACH STACK HAS CONTINUOUS EMISSIONS MONITORS FOR NOX AND CO. COMBINED NOMIAL POWER OUTPUT IS 1.350 MW.	OXIDATION CATALYST	2	PPMVD	3 HOURS	0			0		
	PLAQUEMINE		(4) GAS TURBINES/DUCT	NATURAL			VISUAL INSPECTION FOR OPACITY ON A WEEKLY BASIS, STACK TESTS FOR PM, NOX, SO2, OPACITY, CO				HOURLY			ANNUAL		PPMVD @ 15%	ANNUAL
LA-0136	COGENERATION FACILITY	7/23/2008	BURNERS GAS TURBINES -	GAS	2876	MMBTU/H	EMISSION POINTS GT-500, -600, -700, -800.	GOOD COMBUSTION PRACTICES CO OXIDATION CATALYST AND	212.5	lb/hr	MAXIMUM HOURLY	625.8	T/YR	MAXIMUM ANNUAL	25	O2	AVERAGE ANNUAL
LA-0192	CRESCENT CITY POWER	6/6/2005	187 MW (2) TWO COMBINED		2006	MMBTU/H		GOOD COMBUSTION PRACTICES	17.7	lb/hr	MAXIMUM	77.5	T/YR	MAXIMUM	4	PPM @ 15%O2	AVERAGE
LA-0224	ARSENAL HILL POWER PLANT	2.00.0000	CYCLE GAS TURBINES	NATURAL		MMBTU/H	CTG-1 TURBINE/DUCT BURNER (EQT012) CTG-2 TURBINE/DUCT BURNER(EQT013)	PROPER OPERATING PRACTICES							10	PPMVD@15%O2	ANNUAL
LA-0224	PLANI	3/20/2008	COMBINED	GAS	2110	MMB1U/H		PROPER OPERATING PRACTICES	143.31	lb/hr	MAX	0			10	PPMVD@15%02	AVERAGE
	NINEMILE POINT ELECTRIC GENERATING		CYCLE TURBINE GENERATORS	NATURAL			TURBINES ALSO PERMITTED TO BURN NO. 2 FUEL OIL AND ULTRA LOW SULFUR DIESEL.	OXIDATION CATALYST AND GOOD		DDL EL EN COLLEGY	HOURLY					nm am - 160/	HOURLY
LA-0254	PLANT	8/16/2011	(UNITS 6A & amp; 6B) Combined Cycle	GAS	7146	MMBTU/H	FUEL OIL USE IS LIMITED TO 1000 HOURS PER YEAR.	COMBUSTION PRACTICES	3	PPMVD @ 15% O2	AVERAGE	0			3	PPMVD @ 15% O2	AVERAGE
			Refrigeration														
LA-0257	SABINE PASS LNG TERMINAL	12/6/2011	Compressor Turbines (8)	natural gas	286	MMBTU/H	GE LM2500+G4	Good combustion practices and fueled by natural gas	43.6	lb/hr	HOURLY MAXIMUM	0			58.4	PPMV	AT 15% O2
	SALEM HARBOR STATION		Combustion Turbine				two 315 MW (nominal) GE Energy 7F Series 5 Rapid Response Combined Cycle Combustion				1 HR AVG, DOES NOT APPLY			1 HR AVG, DOES NOT APPLY			
*MA-0039	REDEVELOPMENT	1/30/2014	with Duct Burner	Natural Gas	2449	MMBtu/hr	Turbines with Duct Burners and 31 MW (estimated) steam turbine generators TWO GENERAL ELECTRIC (GE) F-CLASS ADVANCED COMBINED CYCLE	oxidation catalyst	2	PPMVD@15% O2	DURING SS	0.0045	LB/MMBTU	DURING SS	0		
			2 COMBINED- CYCLE COMBUSTION	NATURAL			COMBUSTION TURBINES (CTS) WITH A NOMINAL GENERATING CAPACITY OF 725 MW, COUPLED WITH A HEAT RECOVERY STEAM GENERATOR (HRSG) EQUIPPED WITH DUCT BURNERS, DRY LOW-NOX BURNERS, SCR, OXIDATION	OXIDATION CATALYST AND GOOD		PPMVD @ 15%	3-HOUR BLOCK AVERAGE, EXCLUDING						
*MD-0041	CPV ST. CHARLES	4/23/2014	TURBINES	GAS	725	MEGAWATT	CATALYST EACH TURBINE IS EQUIPPED WITH A HEAT RECOVERY STEAM GENERATOR	COMBUSTION PRACTICES	2	02	SU/SD	0			0		
			3 COMBUSTION TURBINES AND	NATURAL			(HRSG). EACH HRSG IS EQUIPPED WITH A NATURAL GAS FIRED DUCT BURNER (650 MMBTU/H). TOTAL NOMINAL PLAN GENERATING CAPACITY WITHOUT DUCT FIRING IS 800 MW. A MAX OUTPUT OF 1100 MW THROUGH			PPMDV @ 15%							
MI-0366	BERRIEN ENERGY, LLC	4/13/2005	DUCT BURNERS	GAS	1584	MMBTU/H	SUPPLEMENTAL FIRING OF HRSGS. This is a combined-cycle combustion turbine with a non-fired heat recovery steam generator	CATALYTIC OXIDATION.	2	02	3-HOUR BLOCK	165.5	T/YR		2	PPM @ 15% O2	
			Combined cycle				(HRSG).										
*MI-0402	SUMPTER POWER PLANT	11/17/2011	combustion turbine w/ HRSG	Natural gas	130	MW electrical output	Natural gas-fired combustion turbine conversion to combined-cycle. Throughput is 2,237 MMBTU/H for each CTG		0.048	LB/MMBTU	24-HR ROLLING AVERAGE	53.6	lb/hr	24-HR ROLLING AVERAGE	0		
			Natural gas fueled combined cycle combustion turbine				Equipment is permitted as following flexible group (FG): FG-CTG1-2: Two natural gas fired CTGs with each turbine containing a heat recovery steam generator (HRSG) to operate in combined cycle. The two CTGs (with HRSG) are connected										
*MI-0405	MIDLAND COGENERATION VENTURE	4/23/2013	generators (CTG) with HRSG	Natural gas	2227	MMBTU/H	to one steam turbine generator. Each CTG is equipped with a dry low NOx (DLN) burner and a selective catalytic reduction (SCR) system.	Good combustion practices		nn. (EACH CTG; 24-H ROLLING AVG.	42.0		EACH CTG; 24-H ROLLING AVG.			
	MIDLAND COGENERATION		Natural gas fueled combined cycle combustion turbine generators (CTG)				This process is permitted in a flexible group format, identified in the permit as FG-CTG/DB1-2 and is for two natural gas fired CTGs with each turbine containing a hear tecovery steam generator (HRSO) to operate in combined ople. The two CTGs (with HRSO) are connected to one steam turbine generator. Each CTG is equipped with a dry low NOx (DLN) burner and a selective caralytic reduction (SCR) system. Additionally, the HRSG is operating with a natural gas fred due burner for supplemental firing.				EACH CTG/DB; 24-H ROLLING			EACH CTG/DB;			
*MI-0405	VENTURE	4/23/2013	with HRSG and duct burner (DB)	Natural gas	2486	MMBTU/H	The throughput is 2,486 MMBTU/H for each CTG/DB. Natural gas fired CTG with DB for HRSG; 4 total.	Good combustion practices	10.5	PPM	AVG.	57.6	lb/hr	24-H ROLLING AVG.	0		
	THETFORD GENERATING		FGCCA or FGCCB- 4 nat. gas fired CTG			MMBTU/H heat input,	Technology A (4 total) is 2587 MMBTU/H design heat input each CTG. Technology B (4 total) is 2688 MMBTU/H design heat input each CTG. Technology B (4 total) is 2688 MMBTU/H design heat input each CTG. Permit was issued for either of two F Class turbine technologies with slight variations in emission rates. Applicant will select one technology. Installation is two separate CTG/HRSG trains driving one steam turbine electrical generator. Two 2XI Blocks. Each CTG will be rated at 211 to 230 MW (gross) output and the station nominal generating expensivy will be up	Efficient combustion control plus			24-H ROLL AVG DET. EACH H TURBINE						
*MI-0410	STATION	7/25/2013	w/ DB for HRSG	natural gas	2587	each CTG	to 1,400 MW. This process is identified in the permit as FGCTGHRSG; it is 2 combined cycle natural gas-	catalytic oxidation system.	4	PPMV	OPERAT	3159	lb/hr	4-H ROLL AVG	0		
	HOLLAND BOARD OF		FG-CTGHRSG: 2 Combined cycle				fired combustion turbine generators (CTGs) with Heat Recovery Steam Generators (HRSGs) equipped with duct burners for supplemental firing (EUCTGHRSG1 & EUCTGHRSG2 in FGGTGHRSG). The total hours for both units combined for startup and shutdown shall not				24-H ROLL. AVG., NOT			24-H ROLL. AVG., NOT			
*MI-0412	PUBLIC WORKS - EAST 5TH STREET	12/4/2013	CTGs with HRSGs with duct burners	natural gas	647	MMBTU/H for each CTGHRSG	exceed 635 hours per 12-month rolling time period. Each CTGHRSG shall not exceed 647 MMBtu/hr on a fuel heat input basis.	Oxidation catalyst technology and good combustion practices.	4	PPM	STARTUP/SHUT DOWN	5.31	lb/hr	STARTUP/SHUT DOWN	0		
	NORTHERN STATES POWER CO. DBA XCEL ENERGY - RIVERSIDE		TURBINE, COMBINED	NATURAL						PPMVD @ 15%							
MN-0066	PLANT	5/16/2006	CYCLE (2)	GAS	1885	mmbtu/h	TWO COMBUSTION TURBINES, THROUGHPUT FOR EACH Each of these units have a natural gas-fired heat recovery	GOOD COMBUSTION PRACTICES	10	O2 13%	3-HR BLOCK	0			10	PPM @ 15% O2	
			TURBINE, COMBINED CYCLE, NATURAL GAS.	NATURAL			Each of these units have a natural gas-fired heat recovery steam generator and a natural gas-fired dust burner. Each CT combusts natural gas as the primary fuel and very low- sulfur No. 2 fuel oil as a backup fuel. The use of fuel oil is limited to 1,200 hours per year and only during the months of November through March, and is listed as a separate process. These units are listed as a combined source off ultrue units for each type of	GOOD COMBUSTION PRACTICES									
NC-0101	FORSYTH ENERGY PLANT	9/29/2005	(3)	GAS	1844.3	MMBTU/H	as a communea source (an timee units) for each type of fuel.	EFFICIENT PROCESS DESIGN.	11.6	PPM @ 15% O2	3-hour average	0			11.6	PPM @ 15% O2	
			TURBINE & amp; DUCT BURNER, COMBINED CYCLE, NAT GAS,	NATUDAL			Each of these units have a natural gas-fired HRSG & a natural gas fired duct burner. Limits for this process	GOOD COMBUSTION PRACTICES AND EFFICIENT PROCESS									
NC-0101	FORSYTH ENERGY PLANT	9/29/2005	3	GAS	1844.3	MMBTU/H	natural gas fired duct burner. Limits for this process are for turbines and duct burners.	DESIGN PROCESS	25.9	PPM @ 15% O2	3-hr avg	0			25.9	PPM @ 15% O2	1
			TURBINE, COMBINED	NATURAL							3 HR ROLLING			3 HR ROLLING			
NJ-0074	WEST DEPTFORD ENERGY	5/6/2009	CYCLE COMBINED CYCLE	GAS	17298	MMFT3/YR	Natural Gas Usage <= 33,691 MMft^3/yr	CO OXIDATION CATALYST	0.01	LB/MMBTU	AVERAGE	2	PPMVD@15%O	2 AVERAGE	0		
*NJ-0081	PSEG FOSSIL LLC SEWAREN GENERATING STATION	3/7/2014	COMBUSTION TURBINE WITH DUCT BURNER - SIEMENS	Natural Gas	33691	MMCUBIC FT PER YEAR	per 365 consecutive day period, rolling one day basis (per two Siemens turbines and two associated duct burners) The heat input rate of the Siemens turbine will be 2,356 MMBtu/hr(HHV) with a 62.1 duct burner MMBtu/hr(HHV).	Oxidation catalyst and use of only natural gas a clean burning fuel	2	PPMVD	3-HR ROLLING AVE BASED ON 1-HR BLOCK AVE	14	lb/hr	AVERAGE OF THREE ONE HOUR TESTS	0		

RBLCID	FACILITY NAME	PERMIT ISSUANCE DATE	PROCESS NAME	PRIMARY FUEL	THROUGHPUT	THROUGHPUT UNIT	PROCESS NOTES	CONTROL METHOD DESCRIPTION	EMISSION LIMIT 1	UNIT	AVG TIME CONDITION	EMISSION LIMIT 2	UNIT	AVG TIME CONDITION	STANDARAD EMISSION LIMIT	UNIT	AVG TIME CONDITION
			COMBINED				Natural Gas Usage <= 33,691 MMft^3/yr										
			CYCLE COMBUSTION				Natural Gas Usage <= 33,691 MMft^3/yr per 365 consecutive day period, rolling one										
			TURBINE WITH				day basis (per two turbines and two duct	L			3-HR ROLLING						
	PSEG FOSSIL LLC SEWAREN GENERATING		DUCT BURNER - GENERAL				burners) The heat input rate of each General Electric combustion each turbine will be 2,312	CO Oxidation catalyst and good combustion practices and use of natural			AVERAGE BASED ON 1-HR			AVEARAGE OF THREE ONE			
*NJ-0081	STATION	3/7/2014	ELECTRIC	Natural gas	33691	MMCUF/year.	MMBtu/hr(HHV) with a 164.4 MMBtu/hr duct burner	gas only as a clean burning fuel	2	PPMVD@15%O2	BLOCK	11.1	lb/hr	HOUR TESTS	0		
							This is a 427 MW Siemens Combined Cycle Turbine with duct burner Heat Input rate of the turbine = 2276 MMbtu/hr (HHV)										
			Combined Cycle				Heat Input rate of the Duct burner= 777 MMbtu/hr(HHV)				3-HR ROLLING			3-HR ROLLING			
*NJ-0082	WEST DEPTFORD ENERGY STATION	7/18/2014	Combustion Turbine with Duct Burner		20282	MMCF/YR		Oxidation catalyst and use of natural gas		PPMVD@15%O2	AVE BASED ON			AVE BASED ON 1-HR BLOCK			
*NJ-0082	CAITHNES BELLPORT	//18/2014	COMBUSTION	Natural Gas NATURAL	20282	MMCF/YR	The fuel use of 20,282 MMCF/YR is for three turbines and three Duct burners.	a clean burning fuel	1.5	PPMVD(@15%O2	1-HR BLOCK	10.5	lb/hr	1-HR BLOCK	0		+
NY-0095	ENERGY CENTER	5/10/2006	TURBINE	GAS	2221	MMBUT/H	COMBINED CYCLE WITH DUCT FIRING UP TO 494 MMBTU/H	OXIDATION CATALYST	2	PPMVD@15%02		0			0		
			2 Combined Cycle				Two Siemens 2932 MMBtu/H combined cycle combustion turbines, both with 300 MMBtu/H duct burners, with dry low NOx combustors, SCR, and catalytic oxidizer. Will install either 2										
			Combustion				Siemens or 2Mitsubishi, not both (not determined).										
*OH-0352	OREGON CLEAN ENERGY CENTER	6/18/2013	Turbines-Siemens, with duct burners	Natural Gas	51560	MMSCE/rolling 12-MO	Short term limits are different with and without duct burners. This process with duct burners	oxidation catalyst	13	lb/br		72.2	TAVE	PER ROLLING 12 MONTHS	2	PPM	PPMVD AT 15%
O11-0332	CENTER	0/10/2013		ivaturar Gas	31300	MINISCI/IOIIIII 12-MO	Two Mitsubishi 2932 MMBtu/H combined cycle combustion turbines , both with 300	oxidation catalyst	13	IOIII		72.2	171K	MONTHS	1	TTW	02
			2 Combined Cycle Combustion				MMBtu/H duct burners, with dry low NOx combustors, SCR, and catalytic oxidizer. Will install either 2 Siemens or 2Mitsubishi, not both (not determined).										
	OREGON CLEAN ENERGY		Turbines-Mitsubishi,				Short term limits are different with and without duct burners.							PER ROLLING 12	2.		PPMVD AT 15%
*OH-0352	CENTER	6/18/2013	with duct burners	Natural Gas	47917	MMSCF/rolling 12-MO	This process with duct burners. Four GE 7FA combined cycle turbines, dry low NOx burners and selective catalytic reduction.	oxidation catalyst	12.7	lb/hr		183.9	T/YR	MONTHS	2	PPM	O2 PPMVD AT 15%
			Turbines (4) (model				Four GE: /FA combined cycle turbines, dry low NOX burners and selective catalytic reduction. These limits are for each of the 4 turbines individually, while operating with the duct burners										O2 ON 24-H
****	DUKE ENERGY HANGING	12/10/2012	GE 7FA) Duct	NATURAL	1,72		on. This permit is a modification to RBLC OH-0252 to remove hourly restrictions on duct	Good combustion practices burning				200	T. 4. T.	PER ROLLING 12	2	nn. (BLOCK
*OH-0356	ROCK ENERGY	12/18/2012	Burners On COMBUSTION	GAS	172	MW	burners.	natural gas	45.9	lb/hr		278	T/YR	MONTHS	8	PPM	AVERAGE
	LAWTON ENERGY COGEN		TURBINE AND										1				1
OK-0115	FACILITY PSO SOUTHWESTERN	12/12/2006	DUCT BURNER GAS-FIRED		-			GOOD COMBUSTION PRACTICES	16.38	PPMVD	@15% O2	0	+	1	0	-	+
OK-0117	POWER PLT	2/9/2007	TURBINES					COMBUSTION CONTROL	25	PPMVD	@15% O2	0	1		0		
		1	COMBINED CYCLE														
			COGENERATION	NATURAL													
OK-0129	CHOUTEAU POWER PLANT	Γ 1/23/2009	>25MW	GAS	1882	MMBTU/H	SIEMENS V84.3A	GOOD COMBUSTION	8	PPMV	1-HR AVG	51.32	PPMV	3-HR AVG	0		
			COMBUSTION TURBINE & amp;				GE 7241FA TURBINE AND DUCT BURNER.										
			HEAT RECOVERY														
OR-0041	WANAPA ENERGY CENTER	9/9/2005	STEAM GENERATOR	NATURAL	2384 1	MMBTU/H	COMBUSTION TURBINE - 1,778.5 MMBTU/HR DUCT BURNER - 605.6 MMBTU/HR	OXIDATION CATALYST.	,	PPMDV @ 15%	3 HOURS	0			2	PPM @ 15% O2	
OK-0041	WANAI A ENERGI CENTEI	X 8/8/2003		GAS	2304.1	MINIDIOII	DOCT BORNER - 003.0 MAIDTO/TR	OAIDATION CATALTST.	-	02	3 HOURS	0			1	11 M (a) 13 / 6 O2	
			Mitsubishi M501- GAC combustion														
			turbine, combined								3-HR ROLLING			3-HR ROLLING			
	TROUTDALE ENERGY		cycle configuration					Oxidation catalyst;		PPMDV AT 15%	AVERAGE ON	_	PPMDV AT 15%	AVERAGE ON			
*OR-0050	CENTER, LLC	3/5/2014	with duct burner.	natural gs	2988	MMBtwhr	or ULSD; Duct burner 499 MMBtu/hr, natural gas	Limit the time in startup or shutdown.	3.3	02	NG	9	02	ULSD	0		+
			l				Two combine cycle Turbines, each with a combustion turbine and heat recovery steam										
	MOXIE LIBERTY		Combined-cycle Turbines (2) -				generator with duct burner. Each combined-cycle process will be rated at 468 MW or less. The heat input rating of each combustion gas turbine is 2890 MMBtu/hr (HHV) or less, and the							468 MW			
PA-0278	LLC/ASYLUM POWER PL T	10/10/2012	Natural gas fired	Natural Gas	3277	MMBTU/H	heat input rating of each supplemental duct burner is equal to 387 MMBtu/hr (HHV) or less.	Oxidation Catalyst	2	PPMVD	@15% O2	15.3	lb/hr	POWERBLOCK	2	PPMVD	@15% O2
	MOXIE ENERGY LLC/PATRIOT		Combined Cycle Power Blocks 472				Two natural-gas-fired combined cycle powerblocks where each powerblock consists of a										
*PA-0286	GENERATION PLT	1/31/2013	MW - (2)	Natural Gas	0		combustion turbine and heat recovery steam generator with duct burner. The Permittee shall select and install any of the turbine options listed below (or newer versions	CO Catalyst	2	PPMDV		109.3	T/YR	EACH UNIT	0		
							The Permittee shall select and install any of the turbine options listed below (or newer versions of these turbines if the										
							Department determines that such newer versions achieve equivalent or better emissions rates										
							and exhaust parameters) 1. General Electric 7FA (GE 7FA)										
							2. Siemens SGT6-5000F (Siemens F)										
			COMBINED CYCLE UNITS #1				3. Mitsubishi M501G (Mitsubishi G)			PPMVD@ 15%	WITH OR WITHOUT DUCT		TPY 12-MONTH	INCLUDING STARTUP AND			
*PA-0291	HICKORY RUN ENERGY STATION	4/23/2013	and #2	Natural Gas	3.4	MMCF/HR	Siemens SGT6-8000H (Siemens H) The emissions listed are for the Siemens SGT6-8000H unit.	CO catalyst	2	OXYGEN	BURNER	267.32	ROLLING	STARTUP AND SHUTDOWN	0		
											12-MONTH						
*PA-0296	BERKS HOLLOW ENERGY ASSOC LLC/ONTELAUNEE	12/17/2013	Turbine, Combined Cycle, #1 and #2	Natural Gas	3046	MMBtu/hr	Equipped with SCR and Oxidation Catalyst	CO Catalyst	211.92	TPY	ROLLING TOTAL	0	1		0		1
							GREEN POWER ONE WILL CONSIST OF TWO NOMINALLY RATED 35 MW GAS	,	1	i i							
							FIRED TURBINES AND TWO HEAT RECOVERY STEAM GENERATORS, EQUIPPED										
							WITH 312 MMBTU/HR DUCT BURNERS. THE COMBUSTION TURBINES WILL	L					1				1
							ONLY BURN PIPELINE QUALITY SWEET NATURAL GAS. THE DUCT BURNERS WILL BURN NATURAL GAS. COMPLEX GAS OR MIXTURES OF NATURAL GAS	BP AMOCO PROPOSES PROPER COMBUSTION CONTROL AS BACT					1				1
							AND COMPLEX GAS. STEAM PRODUCED IN THE HRSGS WILL BE USED IN THE	FOR CO AND VOC EMISSIONS					1				1
			COGENERATION				CHOCOLATE BAYOU WORKS CHEMICAL COMPLEX. THE CHEMICAL COMPLEX	FROM THE TURBINES AND DUCT BURNERS. CO EMISSIONS FROM					1				1
			TRAIN 2 AND 3				WILL CONSUME APPROXIMATELY HALF OF THE ELECTRICAL OUTPUT PRODUCED BY THE TWO NEW TURBINES. EXCESS POWER PRODUCED BY THE	EACH TURBINE WILL NOT EXCEED					1				1
			(TURBINE AND	L			COMBUSTION TURBINES WILL BE SOLD TO THE GRID.	15 PPMVD AT 85% TO 100% OF					1				1
TX-0497	INEOS CHOCOLATE BAYOU FACILITY	8/29/2006	DUCT BURNER EMISSIONS)	NATURAL GAS	35	MW	THE EMISSIONS ARE PER TRAIN.	BASE LOAD. CO EMISSIONS FROM EACH TU	66.81	lb/hr		373.51	T/YR		0		1
								EACH TU STEAG POWER LLC REPRESENTS		T .			1				1
			WESTINGHOUSE/					GOOD COMBUSTION PRACTICES FOR THE CONTROL OF CO					1				1
			SIEMENS MODEL					EMISSIONS FROM THE					1				1
	NACOGDOCHES POWER		SW501F GAS TURBINE W/416.5					COMBUSTION TURBINES AND HRSG DUCT BURNERS. COMBINED					1				1
	STERNE GENERATING		MMBTU DUCT	NATURAL				CO WILL BE 20.2 PPMVD					1				1
TX-0502	FACILITY CITY PUBLIC SERVICE JK	6/5/2006	BURNERS	GAS	190	MW		CORRECTED TO 15% O2.	109.4	lb/hr		1080	T/YR		0		+
	SPRUCE ELECTRICE		SPRUCE POWER GENERATOR										1				1
TX-0516	GENERATING UNIT 2	12/28/2005	UNIT NO 2						4480	lb/hr		5256	T/YR		0		
	PATTILLO BRANCH		FLECTRICITY	NATURAL.			EACH TURBINE/HRSG WILL BE DESIGNED TO OUTPUT 350 MW. TURBINES BEING CONSIDERED FOR THE PROJECT ARE GE 7FA. GE 7FB. AND SIEMENS SGT6				@ 15% O2 3-HR		1				1
TX-0546	POWER PLANT	6/17/2009	GENERATION	GAS	350	MW	5000F.	OXIDATION CATALYST	2	PPMVD	ROLLING AVG	0	1		0	1	L

BLCID	FACILITY NAME	PERMIT ISSUANCE DATE	PROCESS NAME	PRIMARY	THROUGHPUT	THROUGHPUT UNIT PROCESS NOTES	CONTROL METHOD DESCRIPTION	EMISSION LIMIT 1	UNIT	AVG TIME CONDITION	EMISSION LIMIT 2	UNIT	AVG TIME CONDITION	STANDARAD EMISSION LIMIT	UNIT	AVG TIME CONDITION
, LCID	I ACIETY I MENE	I I	I ROCESS TOTAL	I CEE	I I I I I I I I I I I I I I I I I I I	LAMAR POWER PARTNERS PROPOSES TO CONSTRUCT A NATURAL GAS-FIRED	DIACKHI 110.1		10.01	CONDITION	1	10	COMPTTON	Language	10.00	CONDITION
						COMBINED-CYCLE POWER BLOCK TO BE BUILT AT THE EXISTING SITE IN LAMAR COUNTY, TEXAS. THE NEW POWER BLOCK WILL BE CAPABLE OF										
						PRODUCING EITHER 620 OR 910 MEGAWATTS OF ELECTRICITY, DEPENDING										
						UPON WHICH COMBUSTION TURBINE MODEL OPTION IS CHOSEN. THE										
						PROPOSED PROJECT WOULD INCLUDE TWO COMBUSTION TURBINES (EITHER 170 MW GENERAL ELECTRIC 7FAS OR 250 MW MITSUBISHI 501GS), TWO HEAT										
						RECOVERY STEAM GENERATORS WITH DUCT BURNERS AND ONE STEAM										
	NATURAL GAS-FIRED POWER GENERATION		ELECTRICITY	NATURAL		TURBINE. THE GE7FAS WOULD BE CAPABLE OF PRODUCING 620 MW OF				@ 15% O2. 24-HF						
C-0547	FACILITY	6/22/2009	GENERATION	GAS	250	ELECTRICITY IN COMBINED CYCLE MODE, WHILE THE M501GS WOULD MW PRODUCE 910 MW IN COMBINED CYCLE MODE.	GOOD COMBUSTION PRATICES	15	PPMVD	@ 15% O2, 24-HE ROLLING AVG	0			0		
2-03-47	PACIEITI	0/22/2009	GENERATION	UAS	230		GOOD COMBOSTION FRATREES	113	TIMVD	ROLLENG AVG						
						FOUR GE PG7121(EA) COMBINE CYCLE TURBINES FIRING NATURAL GAS WILL DIRECTLY GENERATE 75 MW; EACH HAS A 165 MMBTU/HR DUCT BURNER AND										
						A HEAT RECOVERY STEAM GENERATOR. TWO HRSGA'S WILL TURN ONE 125										
	MADISON BELL ENERGY		ELECTRICITY	NATURAL		MW STEAM TURBINE AND THE OTHER TWO WILL TURN ANOTHER 125 MW				@ 15% O2, 1-HR						
-0548	CENTER	8/18/2009	GENERATION	GAS	275	MW STEAM TURBINE. THE TURBINE MAY OPERATE WITHOUT THE DUCT BURNER. The plant will be designed to generate 1,350 nominal megawatts of power. There are two	GOOD COMBUSTION PRACTICES	17.5	PPMVD	ROLLING AVG	0	+		0		+
						configuration scenarios: either four Siemens SGT6-5000F CTGs in combined-cycle mode										
(-0590	KING POWER STATION	8/5/2010	Tooking	natural gas	1350	(Scenario A) or four GE Frame 7FA CTGs in combined cycle mode (Scenario B). Scenario B MW also includes one or two auxiliary boilers.	good combustion practices with an oxidation catalyst		PPMVD AT 15%	THREE-HOUR ROLLING	0					
1-0390	KING FOWER STATION	8/3/2010	1 urbine	naturai gas	1330	(2) GE7FA at 195 MW each,	oxidation catalyst	2	02	ROLLING 3-HR	0		ROLLING 3-HR	0	+	+
						(1) steam turbine at 200 MW.				AT 15%			AT 15%			
ζ-0600	THOMAS C. FERGUSON POWER PLANT	9/1/2011	Natural gas-fired	notural ooc	200	Each turbine is equipped with an unfired heat recovery steam generator (HRSG), which MW provides steam for the steam turbine.	Good combustion practices and oxidation catalyst	1 4	PPMVD	OXYGEN/LOAD >= 60%	6	PPMVD	OXYGEN /LOAD < 60%	0		
2-0000		9/1/2011	turomes	naturar gas	390		Catalyse	1	TIMVD	@ 15% O2 ON A	0	TIMVD	< 0076			
C-0618	CHANNEL ENERGY CENTER LLC	10/15/2012	Combined Cycle		180	The turbine is a Siemens 501F rated at a nominal 180 MW and the duct burner will have a MW maximum design heat input of 475 MMBtu/hr.	Good combustion	l.	PPMVD	24-HR ROLLING AVG						
V-0018	CENTERLLU	10/15/2012	Turbine	natural gas	100	MW maximum design heat input of 475 MMBtu/hr. natural gas-fired combined cycle turbine generator with a heat recovery steam generator	Good combustion	4	FFMVD	AVG	U	+		U	 	+
						equipped with a duct burner. The turbine is a Siemens 501F rated at a nominal 180 megawatts										
C-0619	DEER PARK ENERGY CENTER	9/26/2012	Combined Cycle Turbine	natural ass	180	and the DB will have a maximum design rate capability of 725 million British thermal units MW per hour	good combustion	4	PPMVD	@15% O2, 24-HR ROLLING AVG	0			0		
-0019	CENTER	972072012	1 droine	naturai gas	100	i i	good compusion	1	1 1 MIVID	KOLLING AVG		+		0		+
						The generating equipment consists of two natural gas-fired combustion turbines (CTs), each										
						exhausting to a fired heat recovery steam generator (HRSG) to produce steam to drive a shared steam turbine generator. The steam turbine is rated at 271 MW of electric output. Three										
						models of combustion turbines are being considered for this site: the General Electric 7FA.05, the Siemens SGT6-5000F(4), and the Siemens SGT6-5000F(5). The final selection of the										
						the Siemens SGT6-5000F(4), and the Siemens SGT6-5000F(5). The final selection of the combustion turbine will not be made until after the permit is issued. Plant output will range				3-HR ROLL AVG			3-HR ROLL AVO			
	PINECREST ENERGY		combined cycle			between 637 and 735 MW, depending on the model turbine selected. Duct Burners are rated				15% OXYGEN,			15% OXYGEN,	,		
X-0641	CENTER	11/12/2013	turbine	natural gas	700	MW at 750 MMBtu/hr each.	oxidation catalyst	2	PPMVD	80-100% LOAD	4	PPMVD	60-80% LOAD	0		
										CORRECTED TO 15% O2						
	FGE TEXAS POWER I AND					Four (4) Alstom GT24 CTGs, each with a HRSG and DBs, max design capacity 409				ROLLING 3 HR						
X-0660	FGE TEXAS POWER II	3/24/2014	Alstom Turbine	Natural Gas	230.7	MW MMBtu/hr	Oxidation catalyst	2	PPMVD	AVE	0			0		
	FREEPORT LNG					The exhaust heat from the turbine will be used to heat a heating medium which is used to				@15% O2, 3 HOUR ROLLING						
X-0678	PRETREATMENT FACILITY	Y 7/16/2014	Combustion Turbine	natural gas	87	MW regenerate rich amine from the acid gas removal system.	oxidation catalyst	4	PPMVD	AVERAGE	0			0		
	WEST PLANT AND EAST		Two Combustion							15% O2. 24HR						
TX-0687	PLANT CENTRAL HEAT AND POWER	10/13/2014	Turbine-Generators	Natural Gas	13	MW Combined Cycle	Good combustion practices	50	PPM	ROLLING AVG.	0			0		
							·									1
ΓX-0689	CEDAR BAYOU ELECTRIC GENERATION STATION	8/29/2014	Combined cycle natural gas turbines	Natural Gas	225	MW	oc	,	PPM	ROLLING 12 MONTHS	4	DDM	1HR AVG.	0		
			(4) cogeneration	Ivaturai Gas	1223	ain ain	DLN and Closed Loop Emissions	1			7	TTW	HIKAVO.			+
X-0698	BAYPORT COMPLEX	9/5/2013	turbines	natural gas	90	MW (4) GE 7EA turbines providing power and process steam	Controls (CLEC)	15	PPMVD	@15% O2	0			0		
						The specific equipment includes two combustion turbines (CTs) connected to electric										
						generators, producing between 183 and 232 MW of electricity, depending on ambient temperature and the selected CT. The two HRSGs use duct burners rated at 750 MMBtu/hr										
						each to supplement the heat energy from the CTs. The steam from the two HRSGs is combined										
						and routed to a single steam turbine driving a third electric generator with an electricity output										
						capacity of 271 MW. Depending on the selected CT, total plant output at 59ŰF is between 637 MW and 735 MW.										
						05 / MW and /55 MW.										
						The applicant is considering three models of CT; one model will be selected and the permit				@15% O2, 3-HR			@15% O2, 3-HR			
ΓX-0708	LA PALOMA ENERGY CENTER	2/7/2013	(2) combined cycle	notural ooc	650	revised to reflect the selection before construction begins. The three CT models are: (1) MW General Electric 7FA.04; (2) Siemens SGT6-5000F(4); or (3) Siemens SGT6-5000F(5).	avidation autobut	,	PPMVD	ROLLING, 80-	4	PPMVD	ROLLING, 60- 80% LOAD	0		
A-0/08		2/1/2015	Natural gas-fired	natural gas	0.50	Series Electric /FA.04; (2) Siemens SG10-3000F(4); or (3) Siemens SG10-3000F(5).	oxidation catalyst	-	11 MVD	100% LOAD	1	1 CM VI	60% LUAD	0	_	
	SAND HILL ENERGY		combined cycle	L	1			I.			L			L		
TX-0709	CENTER	9/13/2013	turbines	Natural Gas	173.9	MW General Electric 7FA.04 at 197 MW nominal ouput. The duct burners will be capable of a	OC	12	PPM	1HR AVG.	0	+	+	0		+
						maximum natural gas firing rate of up to 483 MMBtu/hr (HHV). The duct burners may be										
						fired additional hours; however, total annual firing will not exceed the equivalent of 4,375 hours at maximum capacity per duct burner. The available capacity of the existing steam				@15% O2 3-HR						
	VICTORIA POWER		combined cycle			turbine will be increased from 125 MW in its existing 1x1x1 configuration to approximately				ROLLING						
TX-0710	STATION	12/1/2014	turbine	natural gas	197	MW 185 MW in the 2x2x1 configuration. The facility will consist of a Mitsubishi Heavy Industries (MHI) J model gas fired combustion	oxidation catalyst	4	PPMVD	AVERAGE	0	1		0		1
						The facility will consist of a Mitsubishi Heavy Industries (MHI) J model gas fired combustion turbine nominally rated at 497 megawatts (MW) equipped with a HRSG and DB with a				@15% O2, 24-HR						
	TRINIDAD GENERATING		combined cycle	1		maximum design capacity of 402 million British thermal units per hour (MMBtu/hr). The				ROLLING		1				
TX-0712	FACILITY	11/20/2014	turbine	natural gas	497	MW gross nominal output of the CTG with HRSG and DB is 530 MW.	oxidation catalyst	4	PPMVD	AVERAGE	0		-	0		
				1		Each CTG is site-rated at 274 MW gross electric output at 62°F ambient temperature. At						1				
				1		this condition, two HRSGs with full duct burner firing produce enough steam to generate an				C150 C2		1				
	TENASKA BROWNSVILLE		(2) combined cycle	1		additional 336 MW, for a total of 884 MW gross, or with about 5% losses, about 840 MW net electric output. Under summertime conditions, the net output is approximately 800 MW with				@15% O2, 24-HR ROLLING		1				
X-0713	GENERATING STATION	4/29/2014	turbines	natural gas	274	MW the 2x1 CCGT configuration or about 400 MW with the 1x1 CCGT configuration. The ass turbines will be one of three ontions:	oxidation catalyst	2	PPMVD	AVERAGE	0			0		
						The gas turbines will be one of three options:						1				
				1		(1) Two Siemens Model F5 (SF5) CTGs each rated at nominal capability of 225 megawatts										
				1		(MW). Each CTG will have a duct fired HRSG with a maximum heat input of 688 million										
						British thermal units per hour (MMBtw/hr).										
				1		(2) Two General Electric Model 7FA (GE7FA) CTGs each rated at nominal capability of 215						1				
						MW. Each CTG will have a duct fired HRSG with a maximum heat input of 523 MMBtu/hr.										
				1		(3) Two Mitsubishi Heavy Industry G Frame (MHI501G) CTGs each rated at a nominal						1	@15% O2,			
	S R BERTRON ELECTRIC		(2) combined cycle			electric output of 263 MW. Each CTG will have a duct fired HRSG with a maximum heat				@15% O2, ONE			ROLLING 12-			
TX-0714	GENERATING STATION	12/19/2014	Iturbines	natural gas	1240	MW input of 686 MMBtu/hr.	oxidation catalyst	14	PPMVD	HOUR	12	PPMVD	MONTH	10	1	1

RBLCID	FACILITY NAME	PERMIT ISSUANCE DATE	PROCESS NAME	PRIMARY FUEL	THROUGHPUT	THROUGHPUT UNIT	PROCESS NOTES	CONTROL METHOD DESCRIPTION	EMISSION LIMIT 1	UNIT	AVG TIME CONDITION	EMISSION LIMIT 2	UNIT	AVG TIME CONDITION	STANDARAD EMISSION LIMIT	UNIT	AVG TIME CONDITION
*TX-0727	CEDAR BAYOU ELECTRIC GENERATING STATION	3/31/2015	Combined cycle turbines Combined-cycle gas	Natural Gas	187	MW/turbine		Oxidation catalysts	15	PPMVD	15%O2	0			0		
*TX-0730	COLORADO BEND ENERGY CENTER	4/1/2015	turbine electric generating facility	natural gas	1100	MW	combined cycle power plant that uses two combustion turbines and one steam turbine, model GE 7HA.02	SCR and oxidation catalyst		PPMVD @ 15%	3-HR AVERAGE	0					
12-0/30	CENTER	4/1/2015	Combined Cycle Turbines (>25	naturar gas	1100	NI W	Two power configuration options authorized	SCR and Oxidation Catalyst		02	5-IIK AVERAGE	0					
*TX-0751	EAGLE MOUNTAIN STEAM ELECTRIC STATION	6/18/2015	MW) – natural gas	natural gas	210	MW	Siemens â€" 231 MW + 500 million British thermal units per hour (MMBtu/hr) duct burner GE å€" 210 MW + 349.2 MMBtu/hr duct burner	Oxidation catalyst	2	PPM	ROLLING 24-HR AVERAGE	0			0		
			Combined Cycle				Two power configuration options authorized	Í									
*TX-0767	LON C. HILL POWER STATION	10/2/2015	Turbines (>25 MW)	natural gas	195	MW	Siemens – 240 MW + 250 million British thermal units per hour (MMBtu/hr) duct burner GE – 195 MW + 670 MMBtu/hr duct burner	Oxidation Catalyst	2	PPM	ROLLING 24-HR AVERAGE	0			0		
			COMBINED								ONE HR AVERAGE						
	WARREN COUNTY POWER		CYCLE TURBINE & amp; DUCT				Emissions are for one of three units (Mitsubishi natural gas-fired combustion turbine (CT)	Oxidation catalyst and good combustion			(WITH DUCT BURNER						
VA-0315	PLANT - DOMINION	12/17/2010	BURNER, 3 Large combustion	Natural Gas	2996	MMBTU/H	generator, Model M501 GAC). Throughput and Units above are for the GEF7.05.	practices.	2.4	PPMVD	FIRING)				0		
	GREEN ENERGY PARTNERS/ STONEWALL,		turbines (>25MW) CCT1				Siemens SGTF-5000F5:										
*VA-0322	BRUNSWICK COUNTY	4/30/2013	and CCT2 COMBUSTION TURBINE	Natural Gas	2.23	MMBTU/hr	Throughput: 2.260 MMBTU/hr Three (3) Mitsubishi M501 GAC combustion turbine generators with HRSG duct burners	Catalytic Oxidizer	0		3 H AVG/WITHOUT	0			0		
*VA-0321	POWER STATION	3/12/2013	GENERATORS, (3) GE 7FA	Natural Gas	3442	MMBTU/H	Inree (3) Mitsubish M301 GAC combustion turbine generators with HRSG duct burners (natural gas-fired).	Oxidation catalyst; good combustion practices.	1.5	PPMVD	DUCT BURNING	0			0		
			COMBUSTION TURBINE & amp;														
	BP CHERRY POINT		HEAT RECOVERY	NATURAL			THREE IDENTICAL CT & HSRG UNITS. EACH CT WILL HAVE AN ANNUAL AVERAGE CAPACITY RATING OF 1614 MMBTU/HR. EACH HRSG DUCT BURNER	LEAN PRE-MIX CT BURNER &									UNITS NOT AVAILABLE
WA-0328	COGENERATION PROJECT	1/11/2005	GENERATOR	GAS	174	MW	WILL HAVE A MAXIMUM FIRING RATE OF 105 MMBTU/HR. This entry is for both of two identical units at the facility.	OXIDATION CATALYST	2	PPMDV	3-HR @ 15%O2	0			0	PPM@ 15 % 02	*SEE NOTES
	MOUNDSVILLE COMBINED		Combined Cycle				Nominal 197 mW General Electric Frame 7FA.04 Turbine w/ Duct Burner - throughput	Oxidation Catalyst + Combustion									
*WV-0025	CYCLE POWER PLANT	11/21/2014	Turbine/Duct Burner	Natural Gas	2419.61	mmBtu/Hr	denotes aggregate heat input of turbine and duct burner (HHV).	Controls	9.2	lb/hr		0		30-DAY	2	PPM	@ 15% O2
*WY-0070	CHEYENNE PRAIRIE GENERATING STATION	8/28/2012	Combined Cycle Turbine (EP01)	Natural Gas	40	MW		Oxidation Catalyst	4	PPMV AT 15% O2	1-HOUR	3.7	lb/hr	ROLLING AVERAGE	32	T/YR	
	Astoria Energy LLC		Combustion Turbine	Natural Gas	1000	MW		Oxidation Catalyst	1.5	ppmvd @ 15% O2	1-hour average; Duct Burners On	7.7	lb/hr	1-hr average; Duct Burners On			
	Catoctin Power LLC		Combustion Turbine	Natural Gas	170	MW		DLN combustion design; oxidation catalyst	3	ppmvd @ 15% O2	3 hr average; Duct Burners On						
	Footprint Power Salem Harbor Development LP		Combustion Turbine	Natural Gas	346	MW		Oxidation Catalyst	8	lb/hr	1-hr average; Duct Burners On	0.0045	lb/MMBtu	1-hr average; Duct Burners On			
	Footprint Power Salem Harbor Development LP		Combustion Turbine	Natural Gas	346	MW		SCR/Low NOx Burners	2	ppmvd @ 15% O2	1-hr average; Duct Burners On	0.025	lb/MW-hr	1-hr average; Duct Burners On			
	Kalama Energy Center		Combustion Turbine	Natural Gas	2247	MMBtu/hr		Oxidation Catalyst	2	ppmvd @ 15% O2	1-hr average	11.3	lb/hr	1-hr average			
	Lawrence Energy Center LLC		Combustion Turbine	Natural Gas	180	MW		Oxidation Catalyst and GCP	2	ppmvd @ 15% O2	1-hr average						
	Lawrence Energy Center LLC		Combustion Turbine	Natural Gas	180	MW		Oxidation Catalyst and GCP	10	ppmvd @ 15% O2	1-hr average						
	GenConn Middletown LLC		Combustion Turbine	Natural Gas	474.9	MMBtu/hr			5	ppmvd @ 15% O2		8	lb/hr				
	PacifiCorp Energy		Block 1 CT	Natural Gas					3	ppmvd @ 15% O2	3-hour	14.1	lb/hr				
	PacifiCorp Energy		Block 2 CT	Natural Gas	629	MW			3	ppmvd @ 15% O2	3-hour	14.1	lb/hr				
	Pioneer Valley Russell City Energy Company,		Combustion Turbine	Natural Gas	387	MW			2	ppmvd @ 15% O2	1-hr average						
	LLC Sevier Power Company Power		Combustion Turbine	Natural Gas	2,038.60	MMBtu/hr			2	ppmvd @ 15% O2	1-hr average						
	Plant CPV Valley Energy Center		Combustion Turbine	Natural Gas	580	MW			3	ppmvd @ 15% O2	3-hr average						
	Wawayanda, NY CPV Valley Energy Center			Natural Gas	630	MW			2	ppmvd @ 15% O2	1-hr average						
	Wawayanda, NY Woodbridge Energy Center			Natural Gas	630	MW			3.6	ppmvd @ 15% O2	1-hr average						
	(CPV Shore, LLC) Woodbridge Energy Center			Natural Gas	2,807	MMBtu/hr			2	ppmvd @ 15% O2							
	(CPV Shore, LLC)			Natural Gas	2,307	MMBtu/hr			2	ppmvd @ 15% O2							
			COMBINED HEAT AND POWER														
	PA STATE UNIV/UNIV PARK CAMPUS		DUAL-FIRED COMBUSTION TURBINE		86 29	MMBtu/hr				10.150/.00							
	Hummel Station LLC		Combustion Turbine	Natural Gas Natural Gas	2,254.00	MMBtu/hr			11.22	ppmvd @ 15% O2		10.6					
	Cricket Valley Energy Center		Combustion Turbine	Natural Gas	1000	MW			2	ppmvd @ 15% O2	1-hr average	10.6	ionr				
	Effingham County Power		Combustion Turbine			MW			2	ppmvd @ 15% O2							
	Gibson County Generation, LLC		Combustion Turbine		417	MW			3	ppmvd @ 15% O3		0.0056	lb/MMBtu				
	Tenaska Partners LLC		Combustion Turbine		3147	MMBtu/hr			2	ppm @15% O2		15.9	lb/hr				
	UGI Development Co/ Hunlock Creek			Natural Gas	471.2	MMBtu/hr			4	ppm @15% O2	>32 °F						
	UGI Development Co/ Hunlock Creek			Natural Gas	471.2	MMBtu/hr			10	ppm @15% O2	<32 °F						
	Huntington Beach Energy Project			Natural Gas	939	MW (net)			2	ppm @15% O2	1-hr rolling						
	Hess Newark Energy Center		Combustion Turbine		2266	MMBtu/hr			2	ppm @15% O2		0.0045	lb/MMBtu				
	York Energy Center Block 1 Shell Chemical				1574	MMBtu/hr			6	ppmvd	3 hour average, rolling by 1-hour						
	Appalachia/Petrochemicals																
	Complex	6/18/2015	1		[664	MMBtu/hr	combustion turbines with duct burners	l .	12	ppmvd @ 15% O2	1-hour average	lb/hr	1	1	1		

RBLCID	FACILITY NAME	PERMIT ISSUANCE DATE	PROCESS NAME	PRIMARY FUEL	THROUGHPUT	THROUGHPUT UNIT PROCESS NOTES	EMISSION LIMIT 1		EMISSION LIMIT 2	UNIT	STANDARAD EMISSION LIMIT	AVG T	TIME DITION
	Liberty Electric Power, LLC				1954	MMBtu/hr Without DB	9	ppmvd @ 15% O2					
	Liberty Electric Power, LLC				1954	MMBtu/hr With DB	20	ppmvd @ 15% O2					

				1		1				1	1						
RBLCID	FACILITY NAME	PERMIT ISSUANCE DATE	PROCESS NAME	PRIMARY FUEL	THROUGHPUT	THROUGHPUT UNIT	PROCESS NOTES	CONTROL METHOD DESCRIPTION	EMISSION LIMIT 1	UNIT	AVG TIME CONDITION	EMISSION LIMIT 2	UNIT	AVG TIME CONDITION	STANDARAD EMISSION LIMIT	UNIT	AVG TIME CONDITION
	KILLINGLY ENERGY		Natural Gas w/o	1					1	PPMVD@15%						1	1
CT-0161	OKEECHOBEE CLEAN	6/30/2017	Duct Firing	Natural Gas	2969	MMBtu/hr	Throughput is for turbine only	Oxidation Catalyst	0.9	02	1 HOUR BLOCK	0		3-HR AVERAGE	-)	
FL-0356	ENERGY CENTER	3/9/2016	Combined-cycle electric generating	Natural gas	3096	MMBtu/hr per turbine	3-on-1 combined cycle unit. GE 7HA.02 turbines, approximately 350 MW per turbine. Total unit generating capacity is approximately 1,600 MW. Primarily fueled with natural gas.	Clean burners that prevent CO formation	4:	PPMVD@15% O2	3-HR AVERAGE, NATURAL GAS	10	PPMVD@15% O	2 ULSD	·	0	
12.0000	DANIA BEACH ENERGY	3/3/2010	2-on-1 combined	Tructurur gus	3070	Ministra in per turone	unit generating capacity is approximately 1,000 strs. I intainly facted with factoring ass.	Clean burning fuel with lean pre-mix	7	1134715@1374-02	TOTAL CALL		TIM TDEED TO	FOR LOADS <		4	1
*FL-0363	CENTER	12/4/2017	cycle unit (GE 7HA) Natural gas	4000	MMBtu/hr	Two nominal 430 MW combustion turbines, coupled to a steam turbine generator	turbines	4.3	PPMVD@15% O2	AT LOADS > 90%	7.2	PPMVD@15% O	2 90%		D.	
MI-0423	INDECK NILES, LLC	1/4/2017	FGCTGHRSG (2 Combined Cycle	Natural gas	9222	MMBTU/H	There are 2 combined cycle natural gas-fired combustion turbine generators (CTGs) with heat recovery steam generators (HRSG) identified as EUCTGHRSG1 & EUCTGHRSG2 in the	Oxidation catalyst technology and good combustion practices.	24.5	LB/H	24-H ROLLING AVG	2527	LB/H	OPERATING HR DURING	•	0	
WII-0423	HOLLAND BOARD OF		FGCTGHRSG (2	Naturai gas	8322	MMB1U/H	Two combined cycle natural gas fired combustion turbine generators (CTGs) with heat	Oxidation catalyst technology and good	24.1	LB/II	EACH EU; 24-H			EACH EU; 24-H		+	+
MI-0424	PUBLIC WORKS - EAST 5TH	12/5/2016	Combined cycle	Natural gas	554	MMBTU/H, each	recovery steam generators (HRSG) (EUCTGHRSG10 & EUCTGHRSG11 in FGCTGHRSG).	combustion practices.	4	PPM	ROLL AVG	5.31	LB/H	ROLL AVG		ð	
MI-0424	HOLLAND BOARD OF PUBLIC WORKS - EAST 5TH	12/5/2016	FGCTGHRSG Startup/Shutdown (2	Notes I am		MMBTU/H; EACH	Two combined cycle natural gas-fired combustion turbine generators (CTGs) with heat	Oxidation catalyst technology and good	247	LB/H	OPERATING HOUR DURING	551.3	I Dat	OPERATING HOUR DURING		0	
W11-0424	PUBLIC WORKS - EAST 31H	12/3/2010	EUCCT (Combined	Naturai gas	334	MMB1U/II; EACII	recovery steam generators (HRSG) (EUCTGHRSG10 & EUCTGHRSG11 in FGCTGHRSG). A 1,934.7 MMBTU/H natural gas fired heavy frame industrial combustion turbine. The	combustion practices. Oxidation catalyst technology and good	247.3	LB/II	24-H	331.3	LB/II	24-H		+	+
MI-0427	FILER CITY STATION	11/17/2017	cycle CTG with	Natural gas	1934.7	MMBTU/H	turbine operates in combined-cycle with an unfired heat recovery steam generator (HRSG).	combustion practices.	4	PPM	ROLL.AVG.,	17.4	LB/H	ROLL.AVG.,		0	
MI-0427	FILER CITY STATION	11/17/2017	EUCCT		1024	MMBTU/H	This emission unit is being entered as a separate process to account for the emission limits	Oxidation catalyst technology and good	1.500	POUNDS	POUNDS PER EVENT						
	NEW COVERT		(Startup/Shutdown) FG-TURB/DB1-3	Natural gas			associated with startup/shutdown events, which could not be included within the previous Three (3) combined-cycle combustion turbine (CT) / heat recovery steam generator (HRSG)	combustion practices. Oxidation catalyst technology and good	1.00		EACH CT/HRSG	0			· ·	4	+
*MI-0432	GENERATING FACILITY	7/30/2018	Startup/Shutdown	Natural gas	1230	MW	trains. Each CT is a natural gas fired Mitsubishi model 501G, equipped with dry low NOx	combustion practices.	1164	LB/H	TRAIN;	0				ð	
	BELLE RIVER COMBINED		FGCTGHRSG	l			Two (2) combined-cycle natural gas-fired combustion turbine generators, each with a heat	Oxidation catalyst technology and good			EACH UNIT; 24-			EACH UNIT; 24-			
°MI-0435	CYCLE POWER PLANT BELLE RIVER COMBINED	7/16/2018	(EUCTGHRSG1 FGCTGHRSG	Natural gas	- 0	-	recovery steam generator (CTGHRSG). This section is the startup and shutdown emission limits for FGCTGHRSG.	combustion practices. Oxidation catalyst technology and good	0.0043	LB/MMBTU	H ROLL AVG; EACH UNIT:	17.59	LB/H	H ROLL AVG;		-	+
*MI-0435	CYCLE POWER PLANT	7/16/2018	(EUCTGHRSG1	Natural gas	0			combustion practices.	791.5	LB/H	OPERATING	0				0	
	MIDDLESEX ENERGY		Combined Cycle				NEW 633 MEGAWATT (MW) GROSS FACILITY CONSISTING OF	OXIDATION CATALYST AND GOOD			3 H ROLLING AV			AV OF THREE			
NJ-0085	CENTER, LLC	7/19/2016	Combustion Turbine Combined Cycle	Natural Gas	8040	H/YR	ONE GENERAL ELECTRIC (GE) 7HA.02 CCCT NOMINALLY RATED AT 380 MW CTGs to operate in simple cycle & combined cycle modes. 231 MW (Siemens) or 210 MW	COMBUSTION PRACTICES	1 2	PPMVD@15% O2	BASED ON ONE	15.3	LB/H	ONE H STACK ANNUAL	-)	
TX-0788	NECHES STATION	3/24/2016	& Cogeneration	natural oas	231	MW	(GE) Simple guela energians limited to 2.500 be/or	OXIDATION CATALYST		PPM	HOURLY	2	PPM	AVERAGE	1	0	
	DECORDOVA STEAM		Combined Cycle				2 CTGs to operate in simple cycle & combined cycle modes. 231 MW (Siemens) or 210 MW										
TX-0789	ELECTRIC STATION PORT ARTHUR LNG	3/8/2016	& Cogeneration	natural gas	231	MW	(GE). Simple cycle operations limited to 2,500 hr/yr.	OXIDATION CATALYST	+ 4	PPM	ROLLING 3-HR	0		+	1	J	
TX-0790	EXPORT TERMINAL	2/17/2016	Refrigeration Compression	natural gas	10	M TONNES/YR	Four GE Frame 7E gas turbines for refrigeration and compression at the site	Dry low NOx burners and good combustion practices	2.	PPM	AVERAGE	0			1 .	0	
	PORT ARTHUR LNG		Simple Cycle	mittin gus	-						ROLLING 3-HR	-			1	4	+
TX-0790	EXPORT TERMINAL	2/17/2016	Electrical	natural gas NATURAL	34	MW	Nine GE PGT25+G4 gas turbines for electrical generation at the site at 34 MW/turbine	OXIDATION CATALYST	9	PPM	AVERAGE	0)	
*TX-0834	MONTGOMERY COUNTY POWER STATIOIN	3/30/2018	Combined Cycle Turbine	GAS	2625	MMBTU/HR/UNIT	Two Mitsubishi M501GAC turbines (without fast start)	OXIDATION CATALYST		PPMVD	15% O2 3 HOUR AVERAGE				l .	0	
17-0034	MONTGOMERY COUNTY		COMBINED	NATURAL	2033	MINIBICATIOCINII		minimizing duration of startup / shutdown	n		AVERAGE	,			·	4	
*TX-0834	POWER STATIOIN	3/30/2018		GAS	0		9 HOURS STARTUP, 1 HOUR SHUTDOWN	events, engaging the pollution control	8000	LB/H		0				ð	
			COMBUSTION														
			TURBINE #2 (NORMAL								@15% O2, 1-HR						
	VICTORVILLE 2 HYBRID		OPERATION, NO	NATURAL							AVG (NO DUCT			1-HR AVG (NO			
CA-1191	POWER PROJECT	3/11/2010	DUCT BURNING)	GAS	154	MW	154 MW Combined Cycle Combustion Turbine Generator	OXIDATION CATALYST SYSTEM	1	PPMVD	BURNING)	7.65	lb/hr	DUCT BURNING	0	ð	
			COMBUSTION TURBINE #1														
			(NORMAL														
			OPERATION, NO	NATURAL							@15% O2, 1-HR						
CA-1192	AVENAL ENERGY PROJECT	6/21/2011	DUCT BURNING)	GAS	180	MW		OXIDATION CATALYST SYSTEM	1.5	PPMVD	AVG	6.27	lb/hr	1-HR AVG		D.	
			COMBUSTION TURBINE														
			GENERATOR, 2														
			units (Normal	NATURAL			Each CTG system will generate 166 MW under design ambient conditions with steam power				@15% O2, 1-HR						
CA-1195	ELK HILLS POWER LLC	1/12/2006	Operation)	GAS	166	MW	augmentation from the duct burners, and 153 MW without steam augmentation.	SCR OR SCONOX	4	PPMVD	AVG	12.5	lb/hr	1-HR AVG		ð	
			COMBUSTION TURBINE														
			GENERATORS														
	HIGH DESERT POWER		(NORMAL	NATURAL			THREE (3) COMBUSTION TURBINE GENERATORS AT 190 MW EACH AND				@15% O2, 24-HR						
CA-1209	PROJECT	3/11/2010	OPERATION)	GAS	190	MW	EQUIPPED WITH A 160 MMBTU/HR DUCT BURNER AND HRSG	OXIDATION CATALYST SYSTEM	4	PPMVD	AVG	17.53	lb/hr	24-HR AVG		J	
			COMBUSTION														
	COLUSA GENERATING		(NORMAL	NATURAL			TWO (2) NATURAL GAS FIRED TURBINES AT 172 MW EACH. BOTH TURBINES				@15% O2. 3-HR			3-HR ROLLING			
CA-1211	STATION	3/11/2011	OPERATION)	GAS	172	MW	EQUIPPED WITH A 688 MMBTU/HR DUCT BURNER AND HRSG.	CATALYTIC OXIDATION SYSTEM		PPMVD	ROLLING AVG	17.9	lb/hr	AVG		D	
			COMBUSTION	1			TWO NATURAL GAS-FIRED COMBUSTION TURBINE-GENERATORS (CTGS) RATED AT 154 MEGAWATT (MW. GROSS) EACH. TWO HEAT RECOVERY STEAM				1					1	
			TURBINES	1			GENERATORS (HRSG), ONE STEAM TURBINE GENERATOR (STG) RATED AT 267				@15% O2, 1-HR			@15% O2, 1-HR		1	
	PALMDALE HYBRID		(NORMAL	NATURAL	1	1	MW, AND 251 ACRES OF PARABOLIC SOLAR-THERMAL COLLECTORS WITH		1		AVG (NO DUCT	1		AVG (W/ DUCT			
CA-1212	POWER PROJECT	10/18/2011	OPERATION)	GAS	154	MW	ASSOCIATED HEAT-TRANSFER EQUIPMENT	OXIDATION CATALYST SYSTEM	1.5	PPMVD	BURNING)	2	PPMVD	BURNING)	1	3	
			NATURAL-GAS FIRED.	1				USE GOOD COMBUSTION CONTROL									
	ROCKY MOUNTAIN		COMBINED-	NATURAL			ONE NEW COMBINED-CYCLE TURBINE IS BEING ADDED TO AN EXISTING	PRACTICES AND CATALISTIC	1								
CO-0056	ENERGY CENTER, LLC	5/2/2006	CYCLE TURBINE	GAS	300	MW	FACILITY.	OXIDATION.	1 :	PPM @ 15% O2		0.044	LB/MMBTU	MONTHLY AV		3 PPM @ 15 O2	
	PUTPLO LIBRORY		Four combined				The off I Marchan Process of the State of th	la		PRINCE 12 12				20 D 11			
°CO-0073	PUEBLO AIRPORT GENERATING STATION	7/22/2010	cycle combution turbines	natural gas	272	mmbtu/hr	Three GE, LMS6000 PF, natural gas-fired, combined cycle CTG, rated at 373 MMBtu per hour each, based on HHV and one (1) HRSG each with no Duct Burners	Good combustion control and catalytic oxidation	1 .	PPMVD AT 15%	1-HR AVE	2 2	lb/hr	30-DAY ROLLING AVE	1 .	0	
20-00/3	OLDERATING STATION	//22/2010		naturar gas	3/3	Drwiii	non each, cased on three and one (1) these each with no Duct Durners	- Varianti (MI	T '		HKAYE	3.3	10/18	MOLLING AVE	1	+	+
			SIEMENS SGT6-	1							1					1	
			5000F COMBUSTION	1	1	1	THROLIGHPLIT IS FOR TURBINE ONLY WHEN FIRING NATURAL GAS		1		1	1					
			TURBINE #1 AND	1			THROUGHFUT IS FOR TURBINE ONLY WHEN FIRING NATURAL GAS										
			#2 (NATURAL	1	1	1	TURBINE: 2136 MMBTU/HR (2.095 MMCF/HR)		1		1	1					
			GAS FIRED) WITH				DUCT BURNER: 445 MMBTU/HR (0.436 MMCF/HR)				1					1	
	KLEEN ENERGY SYSTEMS,		445 MMBTU/HR NATURAL GAS	NATURAL			EMISSION RATES ARE FOR EACH COMBUSTION TURBINE FIRING NATURAL GAS,				W/OUT DUCT			W/DUCT		PPMVD @ 15 %	1 HR-BLOCK (W/OUT DUCT
CT-0151	LLC	2/25/2008	DUCT BURNER	GAS	,,,	MMCF/H	EMISSION RATES ARE FOR EACH COMBUSTION TURBINE FIRING NATURAL GAS, NOT COMBINED	CO CATLYST	4.5	lb/hr	BURNER	0.4	lb/hr	W/DUCT BURNER	0.0	9 02 FFM V D @ 15 %	BURNER)
C1-0131	LEC	2/23/2008	DOCT BURNER	- C. LO		macF/H	500 MMBTU/hr Gas Turbine (Model: GE LM6000) rated at 52 MW and 155 MMBTU/hr	CO CALLEISI	***	The sale	DURITER	0.4	and and		0.3	1	DORNER
	NRG ENERGY CENTER			1			Heat Recovery Steam Generator rated at 18 MW. The unit is required to operate a certified				1 HOUR			1 HOUR			
*DE-0023	DOVER	10/31/2012	UNIT 2- KD1	Natural Gas	655	MMBTU/H	CEMS and COMS.	Oxidation Catalyst System	19.54	lb/hr	AVERAGE	0.032	LB/MMBTU	AVERAGE	1	J	+
FL-0265	HINES POWER BLOCK 4	6/8/2005	COMBINED CYCLE TURBINE	NATURAL GAS	520	MW		GOOD COMBUSTION	,	PPM	NATURAL GAS	12	PPM	OII.	1 .	8 PPM @ 15% O2	
0200		3/8/2002	COMBINED	1	330	F			1 '	1	JOILL GAS	12			1		1
			CYCLE	1	1	1			1		1	1					
	PROGRESS BARTOW		COMBUSTION TURBINE	NATURAL	1	1	1876 MMBTU/HR WHEN FIRING DISTILLATE FUEL OIL. THE SYSTEM NOMINAL CAPACITY 1280 MW. EACH UNIT NOMINAL CAPACITY		1		24-HR BLOCK	1					
FL-0285	PROGRESS BARTOW POWER PLANT	1/26/2003	SYSTEM (4-ON-1)	GAS	1072	MMBTU/H	THE SYSTEM NOMINAL CAPACITY 1280 MW. EACH UNIT NOMINAL CAPACITY 215 MW (ISO) WITH DUCT-FIRED HEAT RECOVERY STEAM GENERATOR.	GOOD COMBUSTION		PPMVD	AVERAGE CEMS					0	
	I CHEKTEMINI	1/20/2007	10.01EM (4-ON-1)	In to	19/2	para ton	para min (100) mini doct-tiked fieat kecovekt steam generator.	GOOD COMBOSTION		11.1.01.4.12	DATE OF CENTS		1	1	1 '	4	

		PERMIT ISSUANCE		PRIMARY				CONTROL METHOD	EMISSION		AVG TIME	EMISSION		AVG TIME	STANDARAD		AVG TIME
RBLCID	FACILITY NAME	DATE	PROCESS NAM		THROUGHPUT	THROUGHPUT UNIT		DESCRIPTION	LIMIT 1	UNIT	CONDITION	LIMIT 2	UNIT	CONDITION	EMISSION LIMIT	UNIT	CONDITION
							2117 MMBTU/HR FUEL OIL.										
							EACH COMBINED CYCLE UNIT SYSTEM (TWO ''3-ON-1'') WILL CONSIST OF: THREE NOMINAL 250 MEGAWATT MODEL 501G GAS										
							TURBINE-ELECTRICAL GENERATOR SETS WITH EVAPORATIVE INLET COOLING										
			COMBINED				SYSTEMS; THREE SUPPLEMENTARY-FIRED HEAT RECOVERY STEAM GENERATORS (HRSGÂ;S) WITH SCR REACTORS; ONE NOMINAL 428										
			CYCLE				MMBTU/HOUR (LHV) GAS-FIRED DUCT BURNER LOCATED WITHIN EACH OF THE										
			COMBUSTION				THREE HRSG¿S; THREE 149 FEET EXHAUST STACKS; ONE 26 CELL										
FL-0286	FPL WEST COUNTY ENERGY CENTER	1/10/200	GAS TURBINES 7 6 UNITS	- NATURAL GAS	233	3 MMBTU/H	MECHANICAL DRAFT COOLING TOWER; AND A COMMON NOMINAL 500 MW— STEAM-ELECTRICAL GENERATOR. FUELHEAT INPUT RAFE (LHV): OIL2,117 MMBTU/H		1	8 PPMVD @15%O2	24-HR	l .					
							FUELHEAT INPUT RATE (LHV): OIL2,117 MMBTU/H COMBINED CYCLE UNIT 3 WILL CONSIST OF: THREE NOMINAL 250 MW										
			THREE NOMINA	AL.			COMBUSTION TURBINE-ELECTRICAL GENERATORS (CTG) WITH EVAPORATIVE										
			250 MW CTG				INLET COOLING SYSTEMS; THREE SUPPLEMENTARY-FIRED HEAT RECOVERY										
	FPL WEST COUNTY		(EACH) WITH SUPPLEMENTA	R NATURAL			STEAM GENERATORS (HRSG) WITH SELECTIVE CATALYTIC REDUCTION (SCR) REACTORS AND A COMMON NOMINAL 500 MW STEAM-ELECTRICAL										
FL-0303	ENERGY CENTER UNIT 3	7/30/200	8 Y-FIRED HRSG 300 MW	GAS	233	3 MMBTU/H	GENERATOR.	GOOD COMBUSTION	_	6 PPMVD (GAS)	12-MONTH		PPMVD (OIL)	24-HOUR	0		
			COMBINED														
	CANE ISLAND POWER		CYCLE COMBUSTION	NATURAL													
FL-0304	PARK	9/8/200	8 TURBINE	GAS	186	0 MMBTU/H		GOOD COMBUSTION PRACTICES		6 PPMVD	12-MONTH		PPMVD	24-HR	0		
			COMBINED				6 TURBINES, 254 MW EACH (NOT INCLUDING STEAM RECOVERY), LIMITS ARE										
	PLANT MCDONOUGH		COMBUSTION	NATURAL			FOR EACH TURBINE (MITSUBISHI MODEL M501G). BACKUP FUEL FOR TWO			PPMVD @ 15%							
GA-0127	COMBINED CYCLE	1/7/200	8 TURBINE COMBINED	GAS	25-	4 MW	TURBINES IS ULTRA-LOW SULFUR FUEL OIL	OXIDATION CATALYST	1.	8 O2	3-HOUR		0		0		
		1	CYCLE COMBUSTION								3 HOUR			3 HOUR			12
		1	TURBINE -				Four GE 7FA combined cycle turbines, dry low NOx burners and selective catalytic reduction.				AVERAGE WO/C			3 HOUR AVERAGE			CONSECUTVE
			ELECTRIC				These limits are for each of the 4 turbines individually, while operating with the duct burners	GOOD COMBUSTION PRACTICES			DUCT FIRING/CONDITI			W/DUCT FIRING/CONDITI			MONTH
GA-0138	LIVE OAKS POWER PLANT	4/8/201	GENERATING 0 PLANT	NATURAL GAS	60	0 MW	on. This permit is a modification to RBLC OH-0252 to remove hourly restrictions on duct burners.	AND CATALYTIC OXIDATION		2 PPMVD @15%02	O FIRING/CONDITI	3.3	PPM@15%02	ON 2	208	T/YR	AVERAGE/CON ITION 2.
	MARSHALLTOWN		Combustion turbin				and identify the second				30-DAY ROLLING AVG.			12-MONTH			
*IA-0107	GENERATING STATION	4/14/201	4 #1 - combined cy		225	8 mmBtu/hr	two identical Siemens SGT6-5000F combined cycle turbines without duct firing, each at 2258 mmBtu/hr generating approx. 300 MW each.	catalytic oxidizer		2 PPM	@15% O2 30-DAY	552	TON/YR	ROLLING TOTAL 12-MONTH	0		
	MARSHALLTOWN		Combustion turbing								30-DAY ROLLING			12-MONTH ROLLING			
*IA-0107	GENERATING STATION	4/14/201	4 #2 -combined cyc	le natural gas	225	8 mmBtu/hr		CO catalyst		2 PPM	AVERAGE HOURLY AVG	552.	TON/YR	TOTAL	0		
											HOURLY AVG EXCEPT						
			Electric Generation				Two combined cycle combustion turbines followed by HRSGs with capability for supplementa	ı		PPMVD @ 15%	DURING SSM OF						
*IL-0112	NELSON ENERGY CENTER	12/28/201	0 Facility	Natural Gas	22	0 MW each	fuel firing in HRSG for each combustion turbine using duct burners. EACH TURBINE IS EOUIPED WITH DRY LOW NOX BURNERS, NATURAL GAS			5 02	TUNING	-)		0		
			FOUR (4)				FIRED DUCT BURNERS, AND A HEAT RECOVERY STEAM GENERATOR										
			NATURAL GAS COMBINED				IDENTIFIED AS HRSG#. NOX EMISSIONS CONTROLLED BY SELECTIVE CATALYTIC REDUCTION SYSTEMS (SCR##) ALONG WITH CO AND VOC										
			CYCLE				EMISSSIONS CONTROLLED BY OXIDATION CATAYLST SYSTEMS (CAT##) IN										
*IN-0158	ST. JOSEPH ENEGRY CENTER, LLC	12/3/201	COMBUSTION 2 TURBINES	NATURAL GAS	230	0 MMBTU/H	EACH TURBINE. EACH STACK HAS CONTINUOUS EMISSIONS MONITORS FOR NOX AND CO. COMBINED NOMIAL POWER OUTPUT IS 1.350 MW.	OXIDATION CATALYST		2 PPMVD	3 HOURS	l .			0		
			GAS TURBINES	-				CO OXIDATION CATALYST AND		7 lb/hr	HOURLY			ANNUAL			ANNUAL
LA-0192	CRESCENT CITY POWER	6/6/200	5 187 MW (2) TWO COMBINE	D	200	6 MMBTU/H		GOOD COMBUSTION PRACTICES	17:	7 lb/hr	MAXIMUM	77.	T/YR	MAXIMUM	4	PPM @ 15%O2	AVERAGE
	ARSENAL HILL POWER	3/20/200	CYCLE GAS	NATURAL		0 MMBTU/H	CTG-1 TURBINE/DUCT BURNER (EQT012)	PROPER OPER ATRIC PRACTICES	143.3						1.0	PD 41 PD C 150/ CO	ANNUAL
LA-0224	PLANT	3/20/200	COMBINED	GAS	2110	U MMB1U/H	CTG-2 TURBINE/DUCT BURNER(EQT013)	PROPER OPERATING PRACTICES	143.3	I Ib/hr	MAX		,		10	PPMVD@15%O2	AVERAGE
	NINEMILE POINT		CYCLE TURBIN GENERATORS	E			TURBINES ALSO PERMITTED TO BURN NO. 2 FUEL OIL AND ULTRA LOW SULFUE DIESEL.	R.									
	ELECTRIC GENERATING		(UNITS 6A &am	; NATURAL				OXIDATION CATALYST AND GOOD		PPMVD @ 15%	HOURLY					PPMVD @ 15%	HOURLY
LA-0254	PLANT	8/16/201	1 6B) Combined Cycle	GAS	714	6 MMBTU/H	FUEL OIL USE IS LIMITED TO 1000 HOURS PER YEAR.	COMBUSTION PRACTICES		3 O2	AVERAGE		0		3	O2	AVERAGE
			Refrigeration														
LA-0257	SABINE PASS LNG TERMINAL	12/6/201	Compressor 1 Turbines (8)	natural gas	28	6 MMBTU/H	GE LM2500+G4	Good combustion practices and fueled by natural gas	43	6 lb/hr	HOURLY MAXIMUM	l .			58.4	PPMV	AT 15% O2
							This is a combined-cycle combustion turbine with a non-fired heat recovery steam generator (HRSG).										
			Combined cycle combustion turbin	e			(HRSG).				24-HR ROLLING			24-HR ROLLING			
*MI-0402	SUMPTER POWER PLANT	11/17/201	l w/ HRSG	Natural gas	130	0 MW electrical output	Natural gas-fired combustion turbine conversion to combined-cycle. Throughput is 2,237 MMBTU/H for each CTG		0.04	8 LB/MMBTU	AVERAGE	53.	5 lb/hr	AVERAGE	0		
		1															
			Natural gas fueled combined cycle	1			Equipment is permitted as following flexible group (FG): FG-CTG1-2: Two natural gas fired CTGs with each turbine containing a heat recovery steam										
	L		combustion turbin	e			generator (HRSG) to operate in combined cycle. The two CTGs (with HRSG) are connected				EACH CTG: 24-H			FACH CTG: 24-H			
*MI-0405	MIDLAND COGENERATION VENTURE	4/23/201	generators (CTG) with HRSG	Natural gas	223	7 MMBTU/H	to one steam turbine generator. Each CTG is equipped with a dry low NOx (DLN) burner and a selective catalytic reduction (SCR) system.	Good combustion practices	1 .	9 PPM	ROLLING AVG.	43	lb/hr	ROLLING AVG.			
							selective catalytic reduction (SCR) system. Natural gas fired CTG with DB for HRSG; 4 total.	·									
							Technology A (4 total) is 2587 MMBTU/H design heat input each CTG.										
							Technology B (4 total) is 2688 MMBTU/H design heat input each CTG.										
		1					Permit was issued for either of two F Class turbine technologies with slight variations in emission rates. Applicant will select one technology. Installation is two separate CTG/HRSG				24-H ROLL AVG						
		1	FGCCA or FGCC				trains driving one steam turbine electrical generator: Two 2X1 Blocks. Each CTG will be				DET. EACH H						
*MI-0410	THETFORD GENERATING STATION	7/25/201	4 nat. gas fired C' w/ DB for HRSG		250	MMBTU/H heat input, 7 each CTG	rated at 211 to 230 MW (gross) output and the station nominal generating capacity will be up to 1,400 MW.	Efficient combustion control plus catalytic oxidation system.		4 PPMV	TURBINE OPERAT	315	lb/br	4-H ROLL AVG			
		7/23/201	2 COMBINED-	maturar gas	238	, caca CTG	100 111.	Cumiyue Oxidation System	T		O. ERAI	313	e accession and a second	- II KOLL AVG	T		
	HIGH BRIDGE		CYCLE COMBUSTION	NATURAL							TURBINE W/O			WITH DUCT-			
MN-0060	GENERATING PLANT NORTHERN STATES	8/12/200	5 TURBINES	GAS ONLY	330	0 MEGAWATTS	EMISSIONS FOR EACH TURBINE.	GOOD COMBUSTION PRACTICES	1	0 PPM @ 15% O2		1	PPM @ 15% O2	BURNER FIRING	18	PPM @ 15% O2	
	NORTHERN STATES POWER CO. DBA XCEL		TURBINE,	1													
	ENERGY - RIVERSIDE	1	COMBINED	NATURAL						PPMVD @ 15%							
MN-0066	PLANT	5/16/200	6 CYCLE (2)	GAS	188:	5 mmbtu/h	TWO COMBUSTION TURBINES, THROUGHPUT FOR EACH	GOOD COMBUSTION PRACTICES	1	0102	3-HR BLOCK)	+	10	PPM @ 15% O2	
		1	COMBINED CYCLE														
			COMBUSTION	1			COMBUSTION TURBINE PERMITTED TO USE NG & NO. 2 OIL; DUCT BURNER										3-HR AVG CTG
MNI 0071	FAIRBAULT ENERGY PARK		TURBINE 7 W/DUCT BURN	NATURAL		8 MMBTU/H	PERMITTED TO USE NG & NO. 2 OIL. DUCT BURNER ALSO AUTHORIZED TO COMBUST LIQUID BIOFUEL.	COOD COMPLISTION	1	9 PPMVD	3-HR. AVG CTG ON NG NO DB		PPMVD	3-HR AVG CTG		PPMVD	NG DB NG OR
MN-0071	TAIRBAULT ENERGY PARK	6/5/200	/ I M/DOCT BORN	:R JUAS	175	o[mmB1U/H	COMBUST LIQUID BIOFUEL.	GOOD COMBUSTION	1	ALLUAND	JON NO NO DB	1 2	дегмур	OIL NO DB	- 11	FFMVD	OIL

							invenergy, LLC - Anegheny County Energ										
		PERMIT ISSUANCE		PRIMARY				CONTROL METHOD	EMISSION		AVG TIME	EMISSION		AVG TIME	STANDARAD		AVG TIME
RBLCID	FACILITY NAME	DATE	PROCESS NAME	FUEL	THROUGHPUT	THROUGHPUT UNIT	PROCESS NOTES Each of these units have a natural gas-fired heat recovery	DESCRIPTION	LIMIT 1	UNIT	CONDITION	LIMIT 2	UNIT	CONDITION	EMISSION LIMIT	UNIT	CONDITION
							steam generator and a natural gas-fired duct burner. Each										
							CT combusts natural gas as the primary fuel and very low-										
			TURBINE				sulfur No. 2 fuel oil as a backup fuel. The use of fuel oil is limited to 1,200 hours per year and only during the										
			COMBINED				months of November through March, and is listed as a										
			CYCLE,				separate process. These units are listed	GOOD COMBUSTION PRACTICES									
NC-0101	FORSYTH ENERGY PLANT	9/29/200	NATURAL GAS,	NATURAL GAS	1944	3 MMBTU/H	as a combined source (all three units) for each type of	AND EFFICIENT PROCESS DESIGN.	11.4	PPM @ 15% O2	3-hour average		,		11.4	5 PPM @ 15% O2	
IVC-0101	TOKST III ENERGI I EANI	9/29/200	TURBINE,		1044.	5 MINIDI COII	inci.	EFFICIENT FROCESS DESIGN.	11.0	11 M (a; 1570 O2		· ·	1		11.0	3 11 M (a) 13 / 6 O2	
			COMBINED	NATURAL							3 HR ROLLING			3 HR ROLLING			
NJ-0074	WEST DEPTFORD ENERGY	5/6/200	9 CYCLE	GAS	1729	8 MMFT3/YR	Natural Gas Usage <= 33,691 MMft^3/yr	CO OXIDATION CATALYST	0.01	LB/MMBTU	AVERAGE	2	PPMVD@15%O2	AVERAGE	()	
			Combined Cycle				per 365 consecutive day period, rolling one										
	PSEG FOSSIL LLC SEWAREN GENERATING		Combustion Turbin	e			day basis (per two turbines and two duct	CO Oxidation Catalyst and Good Combustion Practices and use of Natural			3-HR ROLLING AVE BASED ON			AVERAGE OF THREE ONE			
*NJ-0081	SEWAREN GENERATING STATION	3/7/201	-Siemens turbine 4 without Duct Burn	r Natural oas	3369	1 MMCubic ft/vr	burners) The heat input rate of each Siemens combustion turbine will be 2,356 MMBtu/hr(HHV)	Combustion Practices and use of Natural loas as a clean burning fuel		PPMVD@15% O2	L-HR BLOCK	12	llb/hr	HOUR TESTS			
10 0001	DITTION	3/7/201	COMBINED	Tuturui gus	3307	I IMMEGINE IL II	The near input rate of each ofenicio compositor anome will be 2,350 minute in (1111)	gas as a cican barring raci	·	TT M VD(0,15 / 0 OZ	1-III DLOCK		ito in	HOUR HEATS	,	,	
			CYCLE COMBUSTION				Natural Gas Usage ← 33,691 MMft^3/yr										
			TURBINE				per 365 consecutive day period, rolling one										
			WITHOUT DUCT				day basis (per two turbines and two duct										
	PSEG FOSSIL LLC		BURNER -				burners)	CO Oxidation Catalyst and Good			3-HR ROLLING			AVERAGE OF			
*NJ-0081	SEWAREN GENERATING STATION	2.77201	GENERAL 4 ELECTRIC	Natural Gas	2260	1 MMCF/YR	The heat input rate of each General Electric combustion turbine will be 2,312	Combustion Practices and use of Natural gas as a clean burning fuel		PPMVD@15%O2	AVE BASED ON 1-HR BLOCK	10.2	11.4	THREE ONE HOUR TESTS		,	
-1NJ-0081	SIATION	3///201	4 ELECTRIC	Naturai Gas	3309	I MMCF/IR	MMBtw/hr(HHV) This is a 427 MW Siemens Combined Cycle Turbine with duct burner	gas as a clean burning idei	†	FFMVD(@1370O2	1-DR BLOCK	10.2	10/nr	HOUR TESTS	,	,	
			L				Heat Input rate of the turbine = 2276 MMbtu/hr (HHV)				l						
	WEST DEPTEODS ENDED OV		Combined Cycle Combustion Turbin				Heat Input rate of the Duct burner= 777 MMbtu/hr(HHV)	Oxidation Catalant and House No.			3-HR ROLLING			3-HR ROLLING			
*NJ-0082	WEST DEPTFORD ENERGY STATION	7/18/201	4 without Duct Burn		2028	2 MMCF/YR	The fuel use of 20,282 MMCF/YR is for three turbines and three Duct burner.	Oxidation Catalyst and Use of Natural gas a clean burning fuel	0.0	PPMVD@15%O2	AVE BASED ON 1-HR BLOCK	4.75	lb/hr	AVE BASED ON 1-HR BLOCK		0	
	CAITHNES BELLPORT		COMBUSTION	NATURAL					1			4.7.2	1		1		
NY-0095	ENERGY CENTER	5/10/200	6 TURBINE	GAS	222	1 MMBUT/H	COMBINED CYCLE WITH DUCT FIRING UP TO 494 MMBTU/H	OXIDATION CATALYST	1	PPMVD@15%02		0			()	-
			2 Combined Cycle				Two Mitsubishi 2932 MMBtu/H combined cycle combustion turbines, both with 300 MMBtu/H duct burners, with dry low NOx combustors, SCR, and catalytic oxidizer. Will										
			Combustion				install either 2 Siemens or 2Mitsubishi, not both (not determined).										
	OREGON CLEAN ENERGY		Turbines-Siemens,			MMSCF/rolling 12-	Short term limits are different with and without duct burners.							PER ROLLING 12	2-		PPMVD AT 15%
*OH-0352	CENTER	6/18/201	3 without duct burne	s Natural Gas	51560	0 months	This process without duct burners.	oxidation catalyst	13	lb/hr		72.2	T/YR	MONTHS	2	PPM	O2
							Two Mitsubishi 2932 MMBtu/H combined cycle combustion turbines , both with 300										
			2 Combined Cycle				MMBtu/H duct burners, with dry low NOx combustors, SCR, and catalytic oxidizer. Will										
	OREGON CLEAN ENERGY		Combustion Turbines-Mitsubish	.			install either 2 Siemens or 2Mitsubishi, not both (not determined). Short term limits are different with and without duct burners.							PER ROLLING 12	,		PPMVD AT 15%
*OH-0352	CENTER	6/18/201	3 without duct burne		4791	7 MMSCF/rolling 12-MO	This process without duct burners.	oxidation catalyst	13.7	lb/hr		183.9	T/YR	MONTHS] 2	PPM	02
							Four GE 7FA combined cycle turbines, dry low NOx burners and selective catalytic reduction.										PPMVD AT 15%
	DUKE ENERGY HANGING		Turbines (4) (mode GE 7FA) Duct	NATURAL			These limits are for each of the 4 turbines individually, while operating with the duct burners off. This permit is a modification to RBLC OH-0252 to remove hourly restrictions on duct	Good combustion practices burning						PER ROLLING 12			O2 ON 24-H BLOCK
*OH-0356	ROCK ENERGY	12/18/201	2 Burners Off	GAS	17.	2 MW	burners.	natural gas	25.7	lb/hr		278	T/YR	MONTHS		PPM	AVERAGE
	PSO SOUTHWESTERN		GAS-FIRED														
OK-0117	POWER PLT	2/9/200	7 TURBINES COMBINED	-		1		COMBUSTION CONTROL	25	PPMVD	@15% O2	0	0		()	
			CYCLE														
			COGENERATION	NATURAL													
OK-0129	CHOUTEAU POWER PLANT	1/23/200	9 >25MW COMBUSTION	GAS	188:	2 MMBTU/H	SIEMENS V84.3A	GOOD COMBUSTION		PPMV	1-HR AVG	51.32	PPMV	3-HR AVG	()	
			TURBINE & amp;				GE 7241FA TURBINE AND DUCT BURNER.										
			HEAT RECOVER	Y													
OR-0041	WANAPA ENERGY CENTER	0.0000	STEAM 5 GENERATOR	NATURAL GAS	2204	1 MMBTU/H	COMBUSTION TURBINE - 1,778.5 MMBTU/HR DUCT BURNER - 605.6 MMBTU/HR	OXIDATION CATALYST.		PPMDV @ 15%	3 HOURS					PPM @ 15% O2	
OK-0041	WANAPA ENERGY CENTER	8/8/200	GENERATOR	GAS	2384.	I MMB1U/H	DUCT BURNER - 605.6 MMBTU/HR	OXIDATION CATALYST.	+	102	3 HOURS	-	1		-	PPM (a) 15% O2	
							Two combine cycle Turbines, each with a combustion turbine and heat recovery steam										
	MOXIE LIBERTY		Combined-cycle				generator with duct burner. Each combined-cycle process will be rated at 468 MW or less. The heat input rating of each combustion gas turbine is 2890 MMBtu/hr (HHV) or less, and the							468 MW			
PA-0278	LLC/ASYLUM POWER PL T	10/10/201	Turbines (2) - 2 Natural gas fired	Natural Gas	327	7 MMBTU/H	heat input rating of each combustion gas turbine is 2890 MMBtu/hr (HHV) or less, and the heat input rating of each supplemental duct burner is equal to 387 MMBtu/hr (HHV) or less.	Ovidation Catalyst		PPMVD	@15% O2	15.3	lb/br	POWERBLOCK		PPMVD	@15% O2
111-0270	MOXIE ENERGY	10/10/20/	Combined Cycle	Tuturui Cus		7 IMMEDICALI		Oxfordion Catalyst			(d)1570 OZ	10.0		TOWERDECCK		11.1111	(a) 13 70 O2
*PA-0286	LLC/PATRIOT GENERATION PLT		Power Blocks 472	N			Two natural-gas-fired combined cycle powerblocks where each powerblock consists of a	CO Corolon	1 .	PPMDV			T/YR	EACH UNIT	1 .	J	
-rA-0286	GENEKATION PL1	1/31/201	3 MW - (2)	Natural Gas	+ '	U	combustion turbine and heat recovery steam generator with duct burner.	CO Catalyst	 	FFMDV	 	109.3	1/1 K	EACH UNII	+ (,	
			Combined Cycle														
	SUNBURY GENERATION		Combustion Turbin	e			Three powerblocks consisting of three (3) natural gas fired F class combustion turbines coupled with three (3) heat recovery steam generators (HSRGs) equipped				CORRECTED TO			DUCT BURNERS NOT	1		DUCT BURNERS
*PA-0288	LP/SUNBURY GENERATION LP/SUNBURY SES	4/1/201	3 BURNER (3)	Natural Gas	253800	0 MMBTU/H	with natural gas fired duct burners.	Oxidation Catalyst	-	PPM	15% OXYGEN	10.6	lb/hr	OPERATING	11.2	LB/H	OPERATING
		4.1/201	1		253800		with natural gas fired duct burners. The Permittee shall select and install any of the turbine options listed below (or newer versions		1 '	T		70.0	1		1	1	
							of these turbines if the										
							Department determines that such newer versions achieve equivalent or better emissions rates and exhaust parameters)										
			1	1		1	1. General Electric 7FA (GE 7FA)				1						
			COMBINED				Siemens SGT6-5000F (Siemens F) Mitsubishi M501G (Mitsubishi G)				WITH OR			INCLUDING			
	1		CYCLE UNITS #1	1		1	Mitsubishi M501G (Mitsubishi G) Siemens SGT6-8000H (Siemens H)			PPMVD @ 15%	WITH OR WITHOUT DUCT		TPY 12-MONTH	STARTUP AND			
	HICKORY RUN ENERGY	4/23/201	3 and #2	Natural Gas	3.	4 MMCF/HR	The emissions listed are for the Siemens SGT6-8000H unit.	CO catalyst	<u> </u>	OXYGEN	BURNER	267.32	ROLLING	SHUTDOWN)	<u> </u>
*PA-0291	HICKORY RUN ENERGY STATION										12-MONTH ROLLING		1	1			
*PA-0291	STATION				1	1	Equipped with SCR and Oxidation Catalyst	CO Catalyst	211.92	TPV	ROLLING TOTAL	1 .	J		1		
	STATION BERKS HOLLOW ENERGY	19/12/200	Turbine, Combined	Naturel God	204)	
*PA-0291 *PA-0296	STATION	12/17/201	3 Cycle, #1 and #2 Turbine,	Natural Gas	304	6 MMBtu/hr	Equipped with SCR and Oxidation Catalyst	,			IOIAL	0	,		-)	BASED ON A 12-
	STATION BERKS HOLLOW ENERGY ASSOC LLC/ONTELAUNEE	12/17/201	3 Cycle, #1 and #2 Turbine, COMBINED	Natural Gas	304	6 MMBtu/hr	Equipped with SCR and Oxidation Catarys.				IOIAL	0	,)	MONTH
*PA-0296	STATION BERKS HOLLOW ENERGY ASSOC LLC/ONTELAUNEE FUTURE POWER PA/GOOD		3 Cycle, #1 and #2 Turbine, COMBINED CYCLE UNIT				Equipped with SCR and Oxidation Catalyst			PRIMATA			11.4	WITH DUCT	(TAND	MONTH ROLLING
	STATION BERKS HOLLOW ENERGY ASSOC LLC/ONTELAUNEE	12/17/201 3/4/201	3 Cycle, #1 and #2 Turbine, COMBINED	Natural Gas Natural Gas		6 MMBtw/hr 7 MMBtw/hr	Equipped with SK. and Oxforditor Catalyst	CO Catalyst		PPMVD	@ 15% OXYGEN	17.9	lb/hr	WITH DUCT BURNER	84.8	B T/YR	MONTH
*PA-0296 *PA-0298	STATION BERKS HOLLOW ENERGY ASSOC LLC/ONTELAUNEE FUTURE POWER PA/GOOD SPRINGS NGCC FACILITY CITY PUBLIC SERVICE IK SPRUCE ELECTRICE	3/4/201	3 Cycle, #1 and #2 Turbine, COMBINED CYCLE UNIT 4 (Siemens 5000) SPRUCE POWER GENERATOR				Eduryce Win S. F. and Oxformer Cautys					***	1011		84.8) 8 T/YR	MONTH ROLLING
*PA-0296	STATION BERKS HOLLOW ENERGY ASSOC LLC/ONTELAUNEE FUTURE POWER PA/GOOD SPRINGS NGCC FACILITY CITY PUBLIC SERVICE IK		3 Cycle, #1 and #2 Turbine, COMBINED CYCLE UNIT 4 (Siemens 5000) SPRUCE POWER GENERATOR						4480			***	ib/hr		84.8) 3 T/YR	MONTH ROLLING
*PA-0296 *PA-0298	STATION BERKS HOLLOW ENERGY ASSOC LLC/ONTELAUNEE FUTURE POWER PA/GOOD SPRINGS NGCC FACILITY CITY PUBLIC SERVICE IK SPRUCE ELECTRICE	3/4/201	3 Cycle, #1 and #2 Turbine, COMBINED CYCLE UNIT 4 (Siemens 5000) SPRUCE POWER GENERATOR				EACH TURBINEHRSG WILL BE DESIGNED TO OUTPUT 359 MW. TURBINES BEING CONSIDERED FOR THE PROJECT ARE GE 7FB, AND SEMENS SOTIO		4480			***	1011		84.8) 8 T/YR	MONTH ROLLING

	1		1	1	1	I	I	I	1	1	1				1	1	
RBLCID	FACILITY NAME	PERMIT ISSUANCE DATE	PROCESS NAME	PRIMARY FUEL	THROUGHPUT	THROUGHPUT UNIT	PROCESS NOTES	CONTROL METHOD DESCRIPTION	EMISSION LIMIT 1	UNIT	AVG TIME CONDITION	EMISSION LIMIT 2	UNIT	AVG TIME CONDITION	STANDARAD EMISSION LIMIT	UNIT	AVG TIME CONDITION
							LAMAR POWER PARTNERS PROPOSES TO CONSTRUCT A NATURAL GAS-FIRED COMBINED-CYCLE POWER BLOCK TO BE BUILT AT THE EXISTING SITE IN										T
							LAMAR COUNTY, TEXAS. THE NEW POWER BLOCK WILL BE CAPABLE OF										
							PRODUCING EITHER 620 OR 910 MEGAWATTS OF ELECTRICITY, DEPENDING UPON WHICH COMBUSTION TURBINE MODEL OPTION IS CHOSEN. THE										
							PROPOSED PROJECT WOULD INCLUDE TWO COMBUSTION TURBINES (EITHER										
							170 MW GENERAL ELECTRIC 7FAS OR 250 MW MITSUBISHI 501GS), TWO HEAT										
	NATURAL GAS-FIRED						RECOVERY STEAM GENERATORS WITH DUCT BURNERS AND ONE STEAM TURBINE. THE GE7FAS WOULD BE CAPABLE OF PRODUCING 620 MW OF										
	POWER GENERATION		ELECTRICITY	NATURAL			ELECTRICITY IN COMBINED CYCLE MODE, WHILE THE M501GS WOULD				@ 15% O2, 24-HI	t					
TX-0547	FACILITY	6/22/2009	GENERATION	GAS	250	MW	PRODUCE 910 MW IN COMBINED CYCLE MODE.	GOOD COMBUSTION PRATICES	1:	PPMVD	ROLLING AVG		0		()	
							FOUR GE PG7121(EA) COMBINE CYCLE TURBINES FIRING NATURAL GAS WILL										
							DIRECTLY GENERATE 75 MW; EACH HAS A 165 MMBTU/HR DUCT BURNER AND A HEAT RECOVERY STEAM GENERATOR. TWO HRSG¿S WILL TURN ONE 125										
	MADISON BELL ENERGY		ELECTRICITY	NATURAL			MW STEAM TURBINE AND THE OTHER TWO WILL TURN ANOTHER 125 MW				@ 15% O2, 1-HR						
TX-0548	CENTER	8/18/2009	GENERATION	GAS	275	MW		GOOD COMBUSTION PRACTICES	17.:	PPMVD	ROLLING AVG		0		()	_
							The plant will be designed to generate 1,350 nominal megawatts of power. There are two configuration scenarios: either four Siemens SGT6-5000F CTGs in combined-cycle mode										
							(Scenario A) or four GE Frame 7FA CTGs in combined cycle mode (Scenario B). Scenario B			PPMVD AT 15%							
TX-0590	KING POWER STATION	8/5/2010	1 Turbine	natural gas	1350	MW	also includes one or two auxiliary boilers. (2) GE7FA at 195 MW each,	oxidation catalyst	-	02	ROLLING ROLLING 3-HR		0	ROLLING 3-HR	-		+
							(1) steam turbine at 200 MW.				AT 15%			AT 15%			
TX-0600	THOMAS C. FERGUSON POWER PLANT	0/1/2011	Natural gas-fired turbines		200	MW	Each turbine is equipped with an unfired heat recovery steam generator (HRSG), which	Good combustion practices and oxidation catalyst	1	PPMVD	OXYGEN/LOAD		6 PPMVD	OXYGEN /LOAI < 60%)		
1X-0600	POWER PLANI	9/1/2011	turbines	natural gas	390	MW	provides steam for the steam turbine.	cataryst	<u> </u>	PPMVD	>= 60% @ 15% O2 ON A		6 PPMVD	< 60%		1	+
TV 0610	CHANNEL ENERGY	1005	Combined Cycle	L.,		L OV	The turbine is a Siemens 501F rated at a nominal 180 MW and the duct burner will have a	Cdbdi		DDN 47/D	24-HR ROLLING				1 .		
TX-0618	CENTER LLC	10/15/2012	z i urbine	naturai gas	180	MW	maximum design heat input of 475 MMBtu/hr. natural gas-fired combined cycle turbine generator with a heat recovery steam generator	Good combustion	 	PPMVD	AVG		U		+ '		+
	DEED DADY						equipped with a duct burner. The turbine is a Siemens 501F rated at a nominal 180 megawatts										
TX-0619	DEER PARK ENERGY CENTER	9/26/2012	Combined Cycle Turbine	natural gas	180	MW	and the DB will have a maximum design rate capability of 725 million British thermal units per hour	good combustion] .	PPMVD	@15% O2, 24-HR ROLLING AVG		0		1 .	,	
		,/20/2012		tuu gus	100			Acces accessions	1						1		1
							The three combustion turbine generators (CTG) will be the General Electric 7FA, each with a maximum base-load electric power output of approximately 195 megawatts (MW). The steam										
			Combined cycle gas				turbine is rated at approximately 235 MW. This project also includes the installation of two				@15% O2, 24-HR						
TX-0620	ES JOSLIN POWER PLANT	9/12/2012	2 turbine	natural gas	195	MW	emergency generators, one fire water pump, and auxiliary equipment. No duct burners.	good combustion		PPMVD	ROLLING AVG		0		-)	
							The generating equipment consists of two natural gas-fired combustion turbines (CTs), each										
							exhausting to a fired heat recovery steam generator (HRSG) to produce steam to drive a shared steam turbine generator. The steam turbine is rated at 271 MW of electric output. Three										
							models of combustion turbines are being considered for this site: the General Electric 7FA.05,										
							the Siemens SGT6-5000F(4), and the Siemens SGT6-5000F(5). The final selection of the								_		
	PINECREST ENERGY		combined cycle				combustion turbine will not be made until after the permit is issued. Plant output will range between 637 and 735 MW, depending on the model turbine selected. Duct Burners are rated				3-HR ROLL AVG 15% OXYGEN,			3-HR ROLL AV 15% OXYGEN.	3,		
*TX-0641	CENTER	11/12/2013		natural gas	700	MW	at 750 MMBtu/hr each.	oxidation catalyst	:	PPMVD	80-100% LOAD		4 PPMVD	60-80% LOAD	()	
											CORRECTED TO	1					
	FGE TEXAS POWER I AND						Four (4) Alstom GT24 CTGs, each with a HRSG and DBs, max design capacity 409				ROLLING 3 HR						
*TX-0660	FGE TEXAS POWER II	3/24/2014	4 Alstom Turbine	Natural Gas	230.7	MW	MMBtu/hr	Oxidation catalyst	-	PPMVD	AVE @15% O2 3		0		-)	+
	FREEPORT LNG						The exhaust heat from the turbine will be used to heat a heating medium which is used to				HOUR ROLLING						
*TX-0678	PRETREATMENT FACILITY	Y 7/16/2014	4 Combustion Turbine	natural gas	87	MW	regenerate rich amine from the acid gas removal system.	oxidation catalyst		PPMVD	AVERAGE		0		()	
	WEST PLANT AND EAST PLANT CENTRAL HEAT		Two Combustion								15% O2, 24HR						
*TX-0687	AND POWER	10/13/2014	4 Turbine-Generators	Natural Gas	13	MW	Combined Cycle	Good combustion practices	51	PPM	ROLLING AVG.		0		()	
	CEDAR BAYOU ELECTRIC		Combined cycle								ROLLING 12						
*TX-0689	GENERATION STATION	8/29/2014	4 natural gas turbines	Natural Gas	225	MW		ос		PPM	MONTHS		4 PPM	1HR AVG.	()	
*TX-0698	BAYPORT COMPLEX	9/5/2013	(4) cogeneration	natural eas	90	MW	(4) GE 7EA turbines providing power and process steam	DLN and Closed Loop Emissions Controls (CLEC)	1.	PPMVD	@15% O2		0				
174-0070	DATE OF COMPLEX	9/3/201	, turbines	mituru gus	70			Control (CEEC)		11	(0.1570 02				,		+
							The specific equipment includes two combustion turbines (CTs) connected to electric generators, producing between 183 and 232 MW of electricity, depending on ambient										
							temperature and the selected CT. The two HRSGs use duct burners rated at 750 MMBtu/hr										
							each to supplement the heat energy from the CTs. The steam from the two HRSGs is combined and routed to a single steam turbine driving a third electric generator with an electricity output										
							and routed to a single steam turbine driving a third electric generator with an electricity output capacity of 271 MW. Depending on the selected CT, total plant output at 59°F is between										
							637 MW and 735 MW.										
				1			The applicant is considering three models of CT; one model will be selected and the permit				@15% O2 3-HR			@15% O2. 3-HR	1		
	LA PALOMA ENERGY		(2) combined cycle				revised to reflect the selection before construction begins. The three CT models are: (1)				ROLLING, 80-			ROLLING, 60-			
*TX-0708	CENTER	2/7/2013	Natural gas-fired	natural gas	650	MW	General Electric 7FA.04; (2) Siemens SGT6-5000F(4); or (3) Siemens SGT6-5000F(5).	oxidation catalyst	1	PPMVD	100% LOAD		4 PPMVD	80% LOAD	-		+
	SAND HILL ENERGY		combined cycle														
*TX-0709	CENTER	9/13/2013	turbines	Natural Gas	173.9	MW	Conomic Electric 7EA 04 et 197 MW nominal	oc	1	PPM	1HR AVG.	-	0		-		
				1			General Electric 7FA.04 at 197 MW nominal ouput. The duct burners will be capable of a maximum natural gas firing rate of up to 483 MMBtu/hr (HHV). The duct burners may be								1		
							fired additional hours; however, total annual firing will not exceed the equivalent of 4,375										
	VICTORIA POWER		combined cycle				hours at maximum capacity per duct burner. The available capacity of the existing steam turbine will be increased from 125 MW in its existing 1x1x1 configuration to approximately				@15% O2, 3-HR ROLLING						
*TX-0710	STATION	12/1/2014		natural gas	197	MW	185 MW in the 2x2x1 configuration. The facility will consist of a Mitsubishi Heavy Industries (MHI) J model gas fired combustion	oxidation catalyst	1	PPMVD	AVERAGE		0				
				_			The facility will consist of a Mitsubishi Heavy Industries (MHI) J model gas fired combustion turbine nominally rated at 497 megawatts (MW) equipped with a HRSG and DB with a				@15% O2, 24-HR						
	TRINIDAD GENERATING		combined cycle	1			maximum design capacity of 402 million British thermal units per hour (MMBtu/hr). The				ROLLING				1		
*TX-0712	FACILITY	11/20/2014	4 turbine	natural gas	497	MW	gross nominal output of the CTG with HRSG and DB is 530 MW.	oxidation catalyst	+	PPMVD	AVERAGE		0		-		+
				1			Each CTG is site-rated at 274 MW gross electric output at 62°F ambient temperature. At								1		
							this condition, two HRSGs with full duct burner firing produce enough steam to generate an										
	TENASKA BROWNSVILLE		(2) combined cycle				additional 336 MW, for a total of 884 MW gross, or with about 5% losses, about 840 MW net electric output. Under summertime conditions, the net output is approximately 800 MW with				@15% O2, 24-HR ROLLING	1			1		
*TX-0713	GENERATING STATION	4/29/2014	(2) combined cycle turbines	natural gas	274	MW	the 2xl CCGT configuration or about 400 MW with the 1xl CCGT configuration.	oxidation catalyst	<u> </u>	PPMVD	AVERAGE		0			1	1
						•							-				

							invenergy, LLC - Allegneny County Energ									1	
RBLCID		PERMIT ISSUANCE DATE	PROCESS NAME	PRIMARY FUEL	THROUGHPUT	THROUGHPUT UNIT	PROCESS NOTES	CONTROL METHOD DESCRIPTION	EMISSION LIMIT 1	UNIT	AVG TIME CONDITION	EMISSION LIMIT 2	UNIT	AVG TIME CONDITION	STANDARAD EMISSION LIMIT	UNIT	AVG TIME CONDITION
							The gas turbines will be one of three options:										
							(1) Two Siemens Model F5 (SF5) CTGs each rated at nominal capability of 225 megawatts (MW). Each CTG will have a duet fired HRSG with a maximum heat input of 688 million British thermal units per hour (MMBtu/hr).										
							(2) Two General Electric Model 7FA (GE7FA) CTGs each rated at nominal capability of 215										
							MW. Each CTG will have a duct fired HRSG with a maximum heat input of 523 MMBtu/hr.										
	S R BERTRON ELECTRIC		(2) combined cycle				(3) Two Mitsubishi Heavy Industry G Frame (MHI501G) CTGs each rated at a nominal electric output of 263 MW. Each CTG will have a duct fired HRSG with a maximum heat				@15% O2, ONE			@15% O2, ROLLING 12-			
*TX-0714	GENERATING STATION CEDAR BAYOU ELECTRIC	12/19/2014	Combined cycle	natural gas		MW	input of 686 MMBtu/hr.	oxidation catalyst	4	PPMVD	HOUR	2	PPMVD	MONTH	0		
*TX-0727	GENERATING STATION	3/31/2015	turbines Combined-cycle gas	Natural Gas	187	MW/turbine		Oxidation catalysts	15	PPMVD	15%O2	0			0		+
*TX-0730	COLORADO BEND ENERGY CENTER	4/1/2015	turbine electric generating facility	natural gas	1100	MW	combined cycle power plant that uses two combustion turbines and one steam turbine, model GE 7HA.02	SCR and oxidation catalyst		PPMVD @ 15% O2	3-HR AVERAGE	0			0		
	EAGLE MOUNTAIN STEAM		Combined Cycle Turbines (>25 MW) â& natural				Two power configuration options authorized				ROLLING 24-HR						
*TX-0751	ELECTRIC STATION	6/18/2015	gas naturai	natural gas	210	MW	Siemens â6° 23 Î MW + 500 million British thermal units per hour (MMBtu/hr) duct burner GE â6° 210 MW + 349.2 MMBtu/hr duct burner	Oxidation catalyst	2	PPM	AVERAGE	0			0		
	LON C. HILL POWER		Combined Cycle Turbines (>25				Two power configuration options authorized Siemens – 240 MW + 250 million British thermal units per hour (MMBtu/hr) duct burner				ROLLING 24-HR						
*TX-0767	STATION	10/2/2015	MW)	natural gas	195	MW	GE – 195 MW + 670 MMBtu/hr duct burner	Oxidation Catalyst	2	PPM	AVERAGE	0		ONE HR	0		
			COMBINED CYCLE TURBINE								ONE HR AVERAGE (W/O			AVERAGE (WITH DUCT			
VA-0315	WARREN COUNTY POWER PLANT - DOMINION	12/17/2010	& amp; DUCT BURNER, 3 COMBUSTION	Natural Gas	2996	MMBTU/H	Emissions are for one of three units (Mitsubishi natural gas-fired combustion turbine (CT) generator, Model M501 GAC).	Oxidation catalyst and good combustion practices.	1.5	PPMVD @ 15% O2	DUCT BURNER FIRING)	2.4	PPMVD	BURNER FIRING)	0		
*VA-0321	BRUNSWICK COUNTY POWER STATION		TURBINE GENERATORS, (3)	Natural Gas	3442	MMBTU/H	Three (3) Mitsubishi M501 GAC combustion turbine generators with HRSG duet burners (natural gas-fired).	Oxidation catalyst; good combustion practices.	1.	PPMVD @ 15% O2	AVG/WITHOUT DUCT BURNING						
111-0321	GREEN ENERGY	37122013	Large combustion turbines	Tutuu Ous	3442	Minipi Coli	Throughput and Units above are for the GEF7.05.	practices		02	DOCT BORGERO	,			,		
*VA-0322	PARTNERS/ STONEWALL, LLC	4/30/2013	(>25MW) CCT1 and CCT2	Natural Gas	2.23	MMBTU/hr	Siemens SGTF-5000F5: Throughput: 2.260 MMBTU/hr	Catalytic Oxidizer				0			0		
			GE 7FA COMBUSTION														
	BP CHERRY POINT		TURBINE & amp; HEAT RECOVERY STEAM	NATURAL			THREE IDENTICAL CT & HSRG UNITS. EACH CT WILL HAVE AN ANNUAL	LEAN PRE-MIX CT BURNER &									UNITS NOT AVAILABLE
WA-0328	COGENERATION PROJECT	1/11/2005		GAS	174	MW	AVERAGE CAPACITY RATING OF 1614 MMBTU/HR. EACH HRSG DUCT BURNER WILL HAVE A MAXIMUM FIRING RATE OF 105 MMBTU/HR.	OXIDATION CATALYST		PPMDV	3-HR @ 15%O2	0		30-DAY	0	PPM@ 15 % 02	
*WY-0070	CHEYENNE PRAIRIE GENERATING STATION	8/28/2012	Combined Cycle Turbine (EP01)	Natural Gas	40	MW		Oxidation Catalyst		PPMV AT 15%	1-HOUR	3.7	llb/hr	ROLLING AVERAGE	32	T/YR	
			(,								3-hour block average; Duct			1-hr average; Du			
	Astoria Energy LLC		Combustion Turbine		1000			Oxidation Catalyst DLN combustion design; oxidation	1.5	ppmvd @ 15% O2	Burners Off	7.15	lb/hr	Burners Off			
	Catoctin Power LLC Footprint Power Salem Harbor		Combustion Turbine	Natural Gas		MW		catalyst	1	ppmvd @ 15% O2	1-hr average; Duct			1-hr average; Du	1		
	Development LP Footprint Power Salem Harbor		Combustion Turbine	Natural Gas		MW		Oxidation Catalyst		lb/hr	Burners Off 1-hr average; Duct	0.0045		Burners Off 1-hr average; Due	at .		+
	Development LP Kalama Energy Center		Combustion Turbine Combustion Turbine		346	MW MMBtu/hr		Oxidation Catalyst Oxidation Catalyst		ppmvd @ 15% O2	Burners Off	0.0027	lb/MW-hr	Burners Off 1-hr average			-
	Kalama Energy Center		Combustion Turbine			MMBtu/hr		Oxidation Catalyst	131.1	tov	12-mo rolling	11.3	10/Hr	1-nr average			1
	Lawrence Energy Center LLC		Combustion Turbine			MW		Oxidation Catalyst and GCP		ppmvd @ 15% O2							
	Lawrence Energy Center LLC		Combustion Turbine	Natural Gas	180	MW		Oxidation Catalyst and GCP	1	ppmvd @ 15% O2	1-hr average						
	GenConn Middletown LLC		Combustion Turbine	Natural Gas	474.9	MMBtu/hr				ppmvd @ 15% O2		8	lb/hr				
	PacifiCorp Energy		Block l CT	Natural Gas						ppmvd @ 15% O2	3-hour	14.1	lb/hr				
<u> </u>	PacifiCorp Energy		Block 2 CT	Natural Gas		MW				ppmvd @ 15% O2		14.1	lb/hr				+
<u> </u>	Pioneer Valley Russell City Energy Company,		Combustion Turbine	Natural Gas		MW			2	ppmvd @ 15% O2	1-hr average						+
	LLC Sevier Power Company Power		Combustion Turbine	Natural Gas		MMBtu/hr			1	ppmvd @ 15% O2	1-hr average		<u> </u>				+
	Plant CPV Valley Energy Center Wayneyanda NV		Combustion Turbine	Natural Gas Natural Gas	-	MW			1	ppmvd @ 15% O2 ppmvd @ 15% O2	3-hr average						+
	Wawayanda, NY Woodbridge Energy Center (CPV Shore, LLC)			Natural Gas Natural Gas		MW MMBtu/hr				ppmvd @ 15% O2	1-nr average						1
	(C. V SHORE, EEC.)		COMBINED HEAT		2,307	IDIWIII			<u> </u>	. помичи (4) 1376 О2							1
			AND POWER DUAL-FIRED														
	PA STATE UNIV/UNIV PARK CAMPUS		COMBUSTION TURBINE	Natural Gas	86.29	MMBtu/hr			1.3	ppmvd @ 15% O2							
	Hummel Station LLC		Combustion Turbine	Natural Gas	2,254.00	MMBtu/hr			-	ppmvd @ 15% O2		11.22					1
	Cricket Valley Energy Center		Combustion Turbine	Natural Gas	1000	MW				ppmvd @ 15% O2	1-hr average						
	Effingham County Power Gibson County Generation,		Combustion Turbine	Natural Gas		MW				ppmvd @ 15% O2	3-hr average	-	-				
	LLC		Combustion Turbine		417					ppmvd @ 15% O3	24-hr average		lb/MMBtu				+
	Pioneer Valley Energy Center Russell City Energy Company,		Combustion Turbine			MMBtu/hr			2	ppm @15% O2		12.3	lb/hr	1			+
	LLC		Combustion Turbine			MMBtu/hr			1	ppm @15% O2	1-hour	10	lb/hr	1			+
	Tenaska Partners LLC		Combustion Turbine	Natural Gas	3147	MMBtu/hr			1 - 2	ppm @15% O2		15.9	lb/hr		1		

RBLCID		PERMIT ISSUANCE DATE	PROCESS NAME	PRIMARY FUEL	THROUGHPUT	THROUGHPUT UNIT	PROCESS NOTES	EMISSION LIMIT 1		AVG TIME CONDITION	EMISSION LIMIT 2	UNIT	AVG TIME CONDITION	STANDARAD EMISSION LIMIT	UNIT	AVG TIME CONDITION
	UGI Development Co/ Hunlock															
	Creek			Natural Gas	471.2	MMBtu/hr		4	ppm @15% O2	>32 °F						
	UGI Development Co/ Hunlock	:														
	Creek			Natural Gas		MMBtu/hr				<32 °F						
	Hawkeye Generating, LLC			Natural Gas	615	MW		0.0115	lb/MMBtu	3-hr rolling	194.	79 tpy				
	Huntington Beach Energy															
	Project			Natural Gas	939	MW (net)		2	2 ppm @15% O2	1-hr rolling						
	Hess Newark Energy Center		Combustion Turbine	Natural Gas	2320	MMBtu/hr		2	2 ppm @15% O2	3-hr rolling	0.00	44 lb/MMBtu				
										3 hour average,						
	York Energy Center Block 1				1574	MMBtu/hr		- 6	5 ppmvd	rolling by 1-hour						
										3-hour block						
										average; average or	f					
	York Energy Center Block 2	6/15/2015			2512.5	MMBtu/hr	firing NG with duct burner	2	ppmvd @ 15% O2							
										3-hour block						
	York Energy Center Block 2	6/15/2015			2512.6	MMBtu/hr	firing NG without duct burner	l .	ppmvd @ 15% O2	average; average of	'					
_	Shell Chemical	0/13/2013			2312	MMDtulli	ining NO without duct builter		ppinva (a) 1379 O2	3 test tuns						
	Appalachia/Petrochemicals															
	Complex	6/18/2015			664	MMBtu/hr	combustion turbines with duct burners		ppmvd @ 15% O2	1-hour average	Ib	/hr				
		0/10/2013			1		***************************************	†	1074 02	- III III II retuge	1					
	Liberty Electric Power, LLC				1954	MMBtu/hr	Without DB	9	ppmvd @ 15% O2							
	Liberty Electric Power, LLC				1954	MMBtu/hr	With DB	20	ppmvd @ 15% O2							

Mark							invenergy, LEG - Anegheny County Energ	,								1
Column	RBLCID					THROUGHPUT THROUGHPUT UNIT	PROCESS NOTES								UNIT	AVG TIME CONDITION
March Marc	CT-0161	KILLINGLY ENERGY CENTER	6/30/2017	Natural Gas w/Duc	Natural Gas	2639 MMRtu/hr	Duct humor MRC is 946 MMhtm/hr	Ovidation Catalant	1.6	PPMVD @15%		0			0	
Control Cont		SEMINOLE GENERATING		2-on-1 natural gas			Two GE 7HA.02 combustion turbines, each rated at 415 MW. Total unit capacity is		1.0	02	WITHOUT DUC	Г	CT + DUCT			
Column C	FL-0364		3/21/2018	combined-cycle un	Natural gas	3514 MMBtu/hr	approximately 1,183 MW (gross) and 1,050 MW (net). Due to netting, triggered PSD only for	Oxidation catalyst	1	PPMVD@15% O2		g 2 PPMV			0	
1985 1986	LA-0313	STATION	8/31/2016	Cycle Unit 1A	Natural Gas	3625 MMBTU/hr		practices for normal operations, and good	61.27	LB/H	MAXIMUM	226.16 T/YR	MAXIMUM		0	
Second Content	I A-0313		8/31/201/		Natural Gas	3625 MMRTU/hv			61.27	I B/H		226 16 T/VR			0	
March Marc				FGCTGHRSG (2			There are 2 combined cycle natural gas-fired combustion turbine generators (CTGs) with heat	Oxidation Catalyst Technology and Good			TEST	220.10 1718	MAXIMOM			
March Marc	MI-0423	INDECK NILES, LLC	1/4/2017		Natural gas	8322 MMBTU/H	recovery steam generators (HRSG) identified as EUCTGHRSG1 & EUCTGHRSG2 in the		4	PPM		0			0	
Property	MI-0424	PUBLIC WORKS - EAST 5TH	12/5/2016	Combined cycle	Natural gas	554 MMBTU/H, each	recovery steam generators (HRSG) (EUCTGHRSG10 & EUCTGHRSG11 in FGCTGHRSG).	combustion practices.	4	PPM AT 15% O2	PROTOCOL	0			0	
March Marc	ex (1 0 422		7,70,7016		N	1220 MW	Three (3) combined-cycle combustion turbine (CT) / heat recovery steam generator (HRSG)		Ι,	DDMAND		I 48 TAVE	EACH CT/HR	SG .	0	
March Marc		MEC NORTH, LLC AND		EUCTGHRSG	Ivaturar gas		A combined-cycle natural gas-fired combustion turbine generator (CTG) with heat recovery	Oxidation catalyst technology and good	 		AT 15%O2; NOT	401718	TRAIN, 12-W	,	0	
Section Control Cont	*MI-0433	MEC SOUTH LLC	6/29/2018		Natural gas	500 MW	steam generator (HRSG) in a 1x1 configuration with a steam turbine generator (STG) for a	combustion practices.	4	PPMVD	INCL.	0			0	
March Marc	*MI-0433	MEC SOUTH LLC	6/29/2018	(North Plant): A		500 MW	HRSG duct burner rating of 755 MMBTU/hr (HHV).	combustion practices.	4	PPMVD		0			0	
March Marc	TV 0010	GAINES COUNTY POWER	4292013	Combined Cycle	NATURAL	426 MW		Oxidation catalyst and good combustion	,,	DDMAND	159/ 02				0	
Service Note No. 1985		GREENSVILLE POWER		COMBUSTION	UAS		Turoine Generators		3.3	FFMVD	1376 02	0		i-12	0	
Marie Mari	*VA-0325		6/17/2016	TURBINE	natural gas	3227 MMBTU/HR	3227 MMBTU/HR CT with 500 MMBTU/HR Duct Burner, 3 on 1 configuration.		1.4	PPMVD		214.8 T/YR	MO ROLLING		0	
WINDERSON Control Co	*WV-0029		3/27/2018	GE 7HA.02 Turbin	Natural Gas	3496.2 mmBtu/hr		Practices Catalyst, Good Combustion	11.4			54.8 TONS	YEAR		2 PPM	
Section Sect	CA 1177			Gas turbine	Notes and and	121 2 MW				PPMVD @ 15%	LHOUD				0	
Mark	CA-11//	CENTER LLC	1/22/2009		i vaturai gas	1/1./ MW			1 2	102	1 HOUK	0				1
March Marc	CA 1170	ADDITION ENERGY LLC	2,00,000		Natural		1.45 ppm NOx @ 15% O2 or 2.19 lb/hr	Oxidation autabut	1 .	PPMVD @ 15%	1 HOUR				0	
CHICAN CANNATIVE CHICAN CANN	CA-11/8	ALL LIED ENERGY LLC	3/20/2009	COMBUSTION	ivaturai gas	"	>0.22 ppm voc (@)1578O2 0r >0.12 fbmr	Oxidation Catalyst	1 2	102	1 HOUK	0				1
ACTIVE 110 1	l	COLUSA GENERATING		TURBINES	NATURAL		TWO (2) NATURAL GAS EIRED TURBINES AT 122 MW EACH POTH TURBINES			DDMVD @ 150	@15% O2 1 III		I UD DOLLB	G		
Section Sect	CA-1211		3/11/2011	OPERATION)	GAS	172 MW	EQUIPPED WITH A 688 MMBTU/HR DUCT BURNER AND HRSG.		2	O2		11 lb/hr		G .	0	
MICHANISH MICH				NATURAL-GAS												
RECORD R				COMBINED-	NATURAL			PRATICES AND OXIDATION								
REPORT TRANSPORT TRANSPO	CO-0056	ENERGY CENTER, LLC	5/2/2006	CYCLE TURBINE	GAS	300 MW	FACILITY.	CATALYST.	0.0029	LB/MMBTU		0			0	
COMMINION OF THE PROPERTY OF T				SIEMENS SGT6-												
THE PROPERTY OF THE PROPERTY O							THROLIGHPLIT IS FOR TURBING ONLY WHEN FIRING NATURAL GAS									
CALIFORNIA CAL				TURBINE #1 AND												
CHICA PRINCES CHICAGO																
CT CT CT CT CT CT CT CT				445 MMBTÚ/HR			,	ARE NOT GUARANTEED. EMISSION	4							
SOURCE S	CT 0151	KLEEN ENERGY SYSTEMS,	2.05.000		NATURAL	2 I MMCEAU	EMISSION RATES ARE FOR EACH COMBUSTION TURBINE FIRING NATURAL GAS, NOT COMBINED	RATES DO NOT INCORPORATE THE	s	1h/her	W/OUT DUCT	10.8 Ib/hr	W/DUCT DUDNED		PPMVD @ 15%	1-HR BLOCK
MATERIAL	C1-0131	LLC	2/23/2000	DOCT BORNER	UAS	2.1 MWC1/11	500 MMBTU/hr Gas Turbine (Model: GE LM6000) rated at 52 MW and 155 MMBTU/hr	TOTENTIAL REDUCTION.	1	10111		10.8 1011	BORNER		3 02	1-HK BLOCK
Comment Comm	*DE 0022		10/21/2013	UNIT 2 KDI	Natural Gas	455 MMRTUA		Oxidation antalust system	6.1	lls/lse					0	
Commission Com	DE-0025	DOVER	10/31/2012	CINII 2º RDI	Natural Gas	033 WWIBTCH		Oxidation catalyst system	- 0.4	10111	AVERAGE				0	
STAM FOR SOULS FIXED TRANSPORT CONTROL STAM FOR SOULS FIXED TRANSPORT CONTROL STAM FOR SOULS FIXED TOTAL SOURCE AND							GENERATING CAPACITY OF 170 MW FOR GAS FIRING (180 MW FOR OIL FIRING).									
A SANGHAL CAPACITY OF 69 No. TOTAL NAMES COMMENTED CYCLE IN SISSION NO. A CAPACITY OF 69 NO. TOTAL NAMES COMMENTED CYCLE IN SISSION NO. A CAPACITY OF 69 NO. TOTAL COMMENTAL COM																
PRINCE FRANCE PRINCE PRI							A NOMINAL CAPACITY OF 470 MW. THE TOTAL NOMINAL GENERATING									
ADDITION							CAPACITY OF THE 4-ON-1 COMBINED CYCLE UNIT IS 1150 MW.									
PR TERREY FORT							FUELS: EACH GAS TURBINE WILL FIRE NATURAL GAS AS THE PRIMARY FUEL									
PI URELY NOTE PI URELY NOT							AND ULTRA LOW SULFUR (0.0015% SULFUR) DISTILLATE OIL AS A RESTRICTED									
PATE							FIRING OF OIL. THE APPLICANT REQUESTS 500 HOURS PER YEAR PER GAS	VOC EMISSIONS WILL BE								
PF. URKEY POINT TURBERY - NATURAL NATURAL NODES OF OPERATION, STANDARD NORMAL OPERATION, WITH DICT ADD DETILLATE OIL AT HERE! PRAYO (§ 15) STACK LTST (CT PPAYO (STACK LTST (CT PPAYO (STACK LTST (CT PPAYO (STACK LTST (CT PPAYO (STACK							TURBINE (OR EQUIVALENT) FOR OIL FIRING.	MINIMIZED BY THE EFFICIENT								
FLOSIS POWER PLANT 28,200 SONTS CAS 170 MW BURNER POWER AGGINETATION AND PLANNES. 13 OZ NORMALI GAS 19 OZ GAS 0		FPL TURKEY POINT			NATURAL		MODES OF OPERATION: STANDARD NORMAL OPERATION, WITH DUCT		1	PPMVD @ 15%	STACK TEST (C	T PPMV	D @ 15 % (DUCT BURN	ER)		
COMBISTION TERRINE NATURAL STEP MABTURE WHEN FRENC DISTILLATE FUEL OIL THE SYSTEM NORMAL CAPACITY 129 MW. EACH INTO MONAL CA	FL-0263	POWER PLANT	2/8/2005	UNITS	GAS	170 MW	BURNER, POWER AUGMENTATION AND PEAKING.		1.3	02	NORMAL) GAS	1.9 02			0	
PROCRESS BARTOW 1000 100	l			CYCLE												
FL-Q55 POWER PLANT 1/26/2007 SYSTEM (4-ON-1) GAS 1972 MMBTUH 215 MW (SO) WITH DUCT_HEED HEAT RECOVERY STEAM GENERATOR. GOOD COMBISTRON 1/2 Q2 CT ONLY - GAS 1.5 PPMVD GAS 0		DDOCDESS DARROW		COMBUSTION	NATURAL		1876 MMBTU/HR WHEN FIRING DISTILLATE FUEL OIL.		1	DDMVD @ 150	@ 15% ON DOD		@ 15% O2 FO	R		
EACH COMBINED CYCLE UNIT SYSTEM (TWO &bagaox&blagex) WILL CONSTST OF: THREE NOMINAL 259 MEGAWATT MODEL 501 G GAS TURBINE-ELECTRICAL GENERATOR SETS WITH EAVORACTIVE PICTOCOLING SYSTEMS: THREE SUPPLEMENTARY-SHED HEAT RECOVERY STEAM GENERATOR SETS WITH SAY REACTIVE PICTOCOLING SYSTEMS: THREE SUPPLEMENTARY-SHED HEAT RECOVERY STEAM GENERATOR SETS WITH SAY REACTIVE PICTOCOLING SYSTEMS. THREE SUPPLEMENTARY-SHED HEAT RECOVERY STEAM GENERATOR SETS WITH SAY REACTIVE PICTOCOLING SYSTEMS. THREE SUPPLEMENTARY-SHED HEAT RECOVERY STEAM GENERATOR. THREE HISGAS, STHEET 149 FEET EVALUATE PICTOCOLING SYSTEMS. THREE SUPPLEMENTARY-SHED HEAT RECOVERY STEAM GENERATOR. THREE HISGAS, STHEET 149 FEET EVALUATE PICTOCOLING SYSTEMS. THREE SUPPLEMENTARY-SHED HEAT RECOVERY STEAM SETS OF THE PICTOCOLING SYSTEMS. THREE SUPPLEMENTARY-SHED HEAT RECOVERY STEAM SETS OF THE PICTOCOLING SYSTEMS. THREE SUPPLEMENTARY SHED HEAT RECOVERY SUPPLEMEN	FL-0285		1/26/2007			1972 MMBTU/H	215 MW (ISO) WITH DUCT-FIRED HEAT RECOVERY STEAM GENERATOR.	GOOD COMBUSTION	1.2	O2		1.5 PPMV			0	
WILL CONSIST OF: THERE NOMINAL 250 MEGAWATT MODEL 501G GAS TURBENE-ELECTRICAL GENERATOR SETS WITH EVAPORATIVE SHET COOLING SYSTEMS, THERE SUPPLEMENTARY FRED HEAT RECOVERY STRAM GENERATORS, OINS ADMINAL 250 MMBTUHOUR (LHV) (DAS-FRED DUCT BURNEL							2117 MMBTU/HR FUEL OIL.									
TURBINE-ELECTRICAL GENERATOR SETS WITH EVAPORATIVE PILET COOLING SYSTEMS; THREE LECTRICAL GENERATORS (HESGA)S, WITH SCA REACTORS, ONE NOMINAL 428 COURT OF COURTS OF COURTY COURTS OF COURTY COURTS OF COU	l						EACH COMBINED CYCLE UNIT SYSTEM (TWO ''3-ON-1'')									
COMBINED							WILL CONSIST OF: THREE NOMINAL 250 MEGAWATT MODEL 501G GAS TURRING-ELECTRICAL GENERATOR SETS WITH EVAPORATIVE INLET COOLING		1							
CYCLE COMBUSTION FILE HIS GAS, THERE HIS FELE FELE FELE FELE FELE FELE FELE FEL							SYSTEMS; THREE SUPPLEMENTARY-FIRED HEAT RECOVERY STEAM									
COMBUSTION GAS TURBINES AATURAL SAS TU									1							
FL-0286 ENERGY CENTER 1/10/2007 CUNITS GAS 2333 MMBTUH STEAM-ELECTRICAL GENERATOR. 1.5 O2 GAS 6 O2 OIL 0				COMBUSTION			THREE HRSG¿S; THREE 149 FEET EXHAUST STACKS; ONE 26 CELL		1							
FLUELHEAT INPUT RATE (LHV) OIL2,117 MMBTUH COMBINED CYCLE UNIT 3 WILL CONSIST OF: THREE NOMINAL 250 MW COMBINED CYCLE UNIT 3 WILL CONSIST OF: THREE NOMINAL 250 MW COMBINED CYCLE UNIT 3 WILL CONSIST OF: THREE NOMINAL 250 MW COMBUSTION TURBINE-ELECTRICAL GENERATORS (CTG) WITH EVAPORATIVE REACTORS AND SYSTEMS, THREE SUPPLEMENTARY FRED HEAT RECOVERY STEAM GENERATORS (GRISG) WITH SELECTIVE CATALYTIC REDUCTION (SCR) SPH. WEST COUNTY FPL WEST COUNTY FRED HERS GO WITH EVAPORATIVE GENERATORS (GRISG) WITH SELECTIVE CATALYTIC REDUCTION (SCR) FPMVD @ 15% FPMVD @ 1	FI -0284		1/10/2005		NATURAL	2333 МАЛОТИЛИ	MECHANICAL DRAFT COOLING TOWER; AND A COMMON NOMINAL 500 MW STEAM-FLECTRICAL GENERATOR			PPMVD @ 15%	GAS	PPMV	D @ 15 %		0	
THREE NOMINAL 2.50 MW CTG COMBUSTION TURRINS—ELECTRICAL GENERATORS (CITG) WITH EVAPORATIVE CALL C	12-02-00	LIVIANOI CENTER	1/10/200	0 011113	0.10	2333 MWIDTO/II	FUELHEAT INPUT RATE (LHV): OIL2,117 MMBTU/H		1	102	Cara S	0 02	OIL		-	
259 MW CTG (BACH) WITH STEAM GENERAT RESTRICT SUPPLEMENTAR FIRED HEAT RECOVERY STEAM GENERAT RESTRICT SUPPLEMENTAR FIRED HEAT RECOVERY STEAM GENERAT RESTRICT SUPPLEMENTAR SUPPLEMENTAR STEAM GENERAT RESTRICT SUPPLEMENTAR SUPPLEMENTAR SUPPLEMENTAR STEAM GENERAT RESTRICT SUPPLEMENTAR SUPPLEMENT SUPPLEMENTAR SUPPLEMENTAR SUPPLEMENTAR SUPPLEMENTAR SUPPLEMENTAR SUPPLEMENTAR SUPPLEMENTAR SUPPLEMENTAR SUPPLEMENT SUPPLEMEN				THREE NOMINA			COMBINED CYCLE UNIT 3 WILL CONSIST OF: THREE NOMINAL 250 MW COMBINED TURBINE-FLECTRICAL GENERATORS (CTG) WITH EVAPORATIVE									
FP. WEST COUNTY SUPPLEMENTAR NATURAL REACTORS AND A COMMON NOMINAL 500 MW STEAM-ELECTRICAL PPMVD @ 15% 1.2 QZ	l			250 MW CTG			INLET COOLING SYSTEMS; THREE SUPPLEMENTARY-FIRED HEAT RECOVERY									
FL-0303 ENERGY CENTER UNIT 3 7/30/2008 V-FIRED HRSG GAS 2333 MMBTUH GENERATOR. 1.2 O2 1.5 PPMVD 0		FPL WEST COUNTY			NATURAL				1	PPMVD @ 15%						
determinations. determinations.	FL-0303		7/30/2008			2333 MMBTU/H	GENERATOR.		1.2	02		1.5 PPMV	D		0	
Combine cycle							Basis for the emission standard is either NSPS Subpart KKKK or Department BACT determinations.									
E_0337 POLK POWER STATION 10/14/2012 [sower block (4 on 1) natural gas 1160] MW a 3-9-day volling average for natural gas and fiel of 1, respectively. finel Sulfur limits 1.4 (02 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				L			The BACT emission standards for NOX while operating in combined cycle are more stringent									
COMBNED CYCLE PLANT MCDONOUGH COMBUSTION NATURAL FOR EACH TURBINE (MITSUBISHI MODEL M501G) BACKUP FUEL FOR TWO PPMVD @ 15% 3-HOUR, WITH WITHOUT DUCT	FL-0337	POLK POWER STATION	10/14/2013	power block (4 on	natural gas	1160 MW	than the corresponding Subpart KKKK emissions standards of 15 and 42 ppmvd @15% O2 on a 30-day rolling average for natural gas and fuel oil, respectively.	fuel Sulfur limits	1.4	PPMVD @ 15% O2		0			0	
PLANT MCDONOUGH COMBUSTION NATURAL FOR EACH TURBING (MITSUBISH) MODEL M50(G). BACKUP FUEL FOR TWO PPMVD @ 15% 3-HOUR, WITH WITHOUT DUCT			1,171,201,	COMBINED												
GA-0127 COMBINED CYCLE 1/7/2008/TURBINE GAS 254/MW TURBINES IS ILLTRA-1 OW SULFUR FUEL OIL OXIDATION CATALYST 18/02 DUCT BURNED 1/9 PAM @ 15% CO. BRIDNED 0	1	PLANT MCDONOUGH			NATURAL		6 LURBINES, 254 MW EACH (NOT INCLUDING STEAM RECOVERY), LIMITS ARE FOR EACH TURBINE (MITSUBISHI MODEL M501G). BACKUP FUEL FOR TWO			PPMVD @ 15%	3-HOUR, WITH			ст		
PARTITION OF POST PARTITION OF	GA-0127	COMBINED CYCLE	1/7/2008		GAS	254 MW	TURBINES IS ULTRA-LOW SULFUR FUEL OIL	OXIDATION CATALYST	1.8	02	DUCT BURNER	1 PPM @	15% O2 BURNER		0	

		1			1									1	1	1	
BLCID	FACILITY NAME	PERMIT ISSUANCE DATE	PROCESS NAME	PRIMARY FUEL	THROUGHPUT	THROUGHPUT UNIT	PROCESS NOTES	CONTROL METHOD DESCRIPTION	EMISSION LIMIT 1	UNIT	AVG TIME CONDITION	EMISSION LIMIT 2 UI	NIT	AVG TIME CONDITION	STANDARAD EMISSION LIMIT	UNIT	AVG TIME CONDITION
			COMBINED CYCLE														
			COMBUSTION														
			TURBINE -														
			ELECTRIC GENERATING	NATURAL				GOOD COMBUSTION PRACTICES,		PPMVD @ 15%	3-HOUR AVERAGE/COND						
iA-0138	LIVE OAKS POWER PLANT	4/8/2010	PLANT	GAS	6	00 MW		CATALYTIC OXIDATION	1	02	ITION 2.11	0			0)	
	MARSHALLTOWN		Combustion turbine				two identical Siemens SGT6-5000F combined cycle turbines without duct firing, each at 2258			PPMVD @ 15%	AVG. OF 3 ONE HOUR TEST			12-MONTH			
IA-0107	GENERATING STATION	4/14/2014	#1 - combined cycle COMBUSTION	natural gas	22	58 mmBtu/hr	mmBtu/hr generating approx. 300 MW each.	catalytic oxidizer	1	02	RUNS	71.2 TO	ON/YR	ROLLING	0		
			COMBUSTION TURBINE,					CATALYTIC OXIDATION (CATOX),									
			COMBINED					DRY LOW NOX (DLN),						3-HR ROLLING /			
	LANGLEY GULCH POWER		CYCLE W/ DUCT	NATURAL			SIEMENS SGT6-5000F COMBUSTION TURBINE (NGCT, CCGT) FOR ELECTRICAL	GOOD COMBUSTION PRACTICES	Ι.	PPMVD @ 15%	3-HR ROLLING /			15% O2 DURING	_		
D-0018	PLANT	6/25/2010	BURNER	GAS (ONLY)	2375.	28 MMBTU/H	GENERATION, NOMINAL 269 MW AND 2.1466 MMSCF/HR	(GCP)	-	02	15% O2 HOURLY AVG	11.5 PI	MVD	LL	0)	
											EXCEPT						
IL-0112	NELSON ENERGY CENTER	12/28/2010	Electric Generation	Notes I Con	١ ,	20 MW each	Two combined cycle combustion turbines followed by HRSGs with capability for supplemental		I .	PPMVD @ 15%	DURING SSM OR TUNING						
L-0112	NELSON ENERGY CENTER	12/28/2010	FOUR (4)	Natural Gas	†	20 MW each	fuel firing in HRSG for each combustion turbine using duct burners.		· ·	102	TUNING	0			0	,	
			NATURAL GAS				n onen in the second of the se										
			COMBINED CYCLE				Four GE 7FA combined cycle turbines, dry low NOx burners and selective catalytic reduction. These limits are for each of the 4 turbines individually, while operating with the duct burners										
	ST. JOSEPH ENEGRY		COMBUSTION	NATURAL			on. This permit is a modification to RBLC OH-0252 to remove hourly restrictions on duct			PPMVD @ 15%							
IN-0158	CENTER, LLC	12/3/2012	TURBINES TWO COMBINED	GAS	23	00 MMBTU/H	burners.	OXIDIZED CATALYST	1	02	3 HOURS	2 PI	MVD	3 HOURS	0)	
	ARSENAL HILL POWER		CYCLE GAS	NATURAL.			CTG-1 TURBINE/DUCT BURNER (FOT012)										ANNUAL.
A-0224	PLANT	3/20/2008	TURBINES	GAS	21	10 MMBTU/H	CTG-2 TURBINE/DUCT BURNER(EQT013)	PROPER OPERATING PRACTICES	12.06	lb/hr	MAX	0			4.9	PPMVD@15%O2	AVERAGE
			COMBINED CYCLE TURBINE				TURBINES ALSO PERMITTED TO BURN NO. 2 FUEL OIL AND ULTRA LOW SULFUR				1						
	NINEMILE POINT		GENERATORS				DIESEL.				HOURLY			HOURLY			
	ELECTRIC GENERATING		(UNITS 6A &	NATURAL				l		PPMVD @ 15%	AVERAGE W/O	PI	MVD @ 15%	AVERAGE W/	_		
A-0254	PLANT	8/16/2011	(6B) Combined Cycle	UAS	71	46 MMBTU/H	FUEL OIL USE IS LIMITED TO 1000 HOURS PER YEAR.	GOOD COMBUSTION PRACTICES	1.4	102	DUCT BURNER	3.8 O	4	DUCT BURNER	0	1	
			Refrigeration					L			L						
A-0257	SABINE PASS LNG TERMINAL	12// 2011	Compressor Turbines (8)	natural gas	١ ,	86 MMBTU/H	GE LM2500+G4	Good combustion practices and fueled by natural gas	0.66	11.4	HOURLY MAXIMUM						
A-0237	TERMINAL	12/6/2011	Turbines (8)	naturai gas	†	80 MMB1U/II	GE EM2300+G4	naturai gas	0.00	i ioni	1 HR AVG	0					
			L <u>.</u>								EXCLUDING			I HR AVG			
MA-0039	SALEM HARBOR STATION REDEVELOPMENT	1/30/2014	Combustion Turbine with Duct Burner	Natural Gas	24	49 MMBtu/hr	two 315 MW (nominal) GE Energy 7F Series 5 Rapid Response Combined Cycle Combustion Turbines with Duct Burners and 31 MW (estimated) steam turbine generators	Oxidation catalyst	1 ,	PPMVD @ 15%	SS/NO DUCT FIRING	1.7 PF	MVD@15% 02	EXCLUDING SS/DUCT FIRING	0		
							Turbines with Duct Burners and 31 MW (estimated) steam turbine generators TWO GENERAL ELECTRIC (GE) F-CLASS ADVANCED COMBINED CYCLE										
			2 COMBINED- CYCLE				COMBUSTION TURBINES (CTS) WITH A NOMINAL GENERATING CAPACITY OF 725 MW, COUPLED WITH A HEAT RECOVERY STEAM GENERATOR (HRSG)				3-HOUR BLOCK AVERAGE.			3-HOUR BLOCK AVERAGE,			
			COMBUSTION	NATURAL			EQUIPPED WITH DUCT BURNERS, DRY LOW-NOX BURNERS, SCR, OXIDATION	OXIDATION CATALYST AND GOOD		PPMVD @ 15%	EXCLUDING			EXCLUDING			
MD-0041	CPV ST. CHARLES	4/23/2014	TURBINES	GAS	7	25 MEGAWATT	CATALYST	COMBUSTION PRACTICES	1	O2	SU/SD	3.2 lb	hr	SU/SD	0)	
			2 COMBINED				TWO MITSUBISHI ''G'Model Combustion Turbine										
			CYCLE				GENERATORS (CTS) WITH A NOMINAL GENERATING CAPACITY OF 270 MW	USE OF PIPELINE NATURAL GAS,			3-HOUR BLOCK						
	WILDCAT POINT		COMBUSTION TURBINES, WITH				CAPACITY EACH, COUPLED WITH A HEAT RECOVERY STEAM GENERATOR (HRSG) EQUIPPED WITH DUCT BURNERS, DRY LOW-NOX COMBUSTORS,	GOOD COMBUSTION PRACTICES, AND USE OF AN OXIDATION		PPMVD @ 15%	AVERAGE, EXCLUDING						
MD-0042	GENERATION FACILITY	4/8/2014		GAS	10	00 MW	SELECTIVE CATALYTIC REDUCTION (SCR), OXIDATION CATALYST	CATALYST	1.6	O2 15%	SU/SD	6720 LI	3/EVENT	COLD STARTUP	0	,	
							EACH TURBINE IS EQUIPPED WITH A HEAT RECOVERY STEAM GENERATOR										
			3 COMBUSTION				(HRSG). EACH HRSG IS EQUIPPED WITH A NATURAL GAS FIRED DUCT BURNER (650 MMBTU/H). TOTAL NOMINAL PLAN GENERATING CAPACITY WITHOUT	CATALYTIC OXIDIZER PROVIDES									
			TURBINES AND	NATURAL			DUCT FIRING IS 800 MW. A MAX OUTPUT OF 1100 MW THROUGH	SOME CONTROL FOR									
4I-0366	BERRIEN ENERGY, LLC	4/13/2005	DUCT BURNERS	GAS	15	84 MMBTU/H	SUPPLEMENTAL FIRING OF HRSGS. Throughput is 2,237 MMBTU/H for each CTG	VOCS.	3.2	lb/hr		95.3 T/	YR		0)	
			Natural gas fueled				Equipment is permitted as following flexible group (FG):										
			combined cycle combustion turbine				FG-CTG1-2: Two natural gas fired CTGs with each turbine containing a heat recovery steam generator (HRSG) to operate in combined cycle. The two CTGs (with HRSG) are connected				EACH CTG:						
	MIDLAND COGENERATION		generators (CTG)				to one steam turbine generator. Each CTG is equpped with a dry low NOx (DLN) burner and a				TEST						
MI-0405	VENTURE	4/23/2013	with HRSG	Natural gas	22	37 MMBTU/H	selective catalytic reduction (SCR) system.	Good combustion practices	0.0018	LB/MMBTU	PROTOCOL	0			0		
							This process is permitted in a flexible group format, identified in the permit as FG-CTG/DB1-2				1						
			Natural gas fueled				and is for two natural gas fired CTGs with each turbine containing a heat recovery steam generator (HRSG) to operate in combined cycle. The two CTGs (with HRSG) are connected				1						
			Natural gas fueled combined cycle				generator (HRSG) to operate in combined cycle. The two CTGs (with HRSG) are connected to one steam turbine generator. Each CTG is equipped with a dry low NOx (DLN) burner and				1						
			combustion turbine				a selective catalytic reduction (SCR) system. Additionally, the HRSG is operating with a				1						
	MIDLAND COGENERATION		generators (CTG) with HRSG and duct				natural gas fired duct burner for supplemental firing.				TEST						
MI-0405	VENTURE	4/23/2013	burner (DB)	Natural gas	24	86 MMBTU/H	The throughput is 2,486 MMBTU/H for each CTG/DB. Natural gas fired CTG with DB for HRSG; 4 total.	Good combustion practices	0.004	LB/MMBTU	PROTOCOL	0		<u> </u>			
							Natural gas fired CTG with DB for HRSG; 4 total.			1							
							Technology A (4 total) is 2587 MMBTU/H design heat input each CTG.				1						
											1						
							Technology B (4 total) is 2688 MMBTU/H design heat input each CTG.				1						
							Permit was issued for either of two F Class turbine technologies with slight variations in				1						
			raaa				emission rates. Applicant will select one technology. Installation is two separate CTG/HRSG				1						
	THETFORD GENERATING		FGCCA or FGCCB- 4 nat. gas fired CTG			MMBTU/H heat input,	trains driving one steam turbine electrical generator; Two 2X1 Blocks. Each CTG will be rated at 211 to 230 MW (gross) output and the station nominal generating capacity will be up	Efficient combustion control plus			1						
MI-0410	STATION	7/25/2013	w/ DB for HRSG	natural gas	25	87 each CTG	to 1.400 MW	catalytic oxidation system.				0			0		
							This process is identified in the permit as FGCTGHRSG; it is 2 combined cycle natural gas- fired combustion turbine generators (CTGs) with Heat Recovery Steam Generators (HRSGs)										
			FG-CTGHRSG: 2				equipped with duct burners for supplemental firing (EUCTGHRSG1 & EUCTGHRSG2 in				1						
	HOLLAND BOARD OF		Combined cycle				FGCTGHRSG). The total hours for both units combined for startup and shutdown shall not	L									
	PUBLIC WORKS - EAST 5TH STREET	12/4/2012	CTGs with HRSGs with duct burners	natural ose	_	MMBTU/H for each 47 CTGHRSG	exceed 635 hours per 12-month rolling time period. Each CTGHRSG shall not exceed 647 MMBtwhr on a fuel heat input basis.	Oxidation catalyst technology and good combustion practices.	1 .	PPMVD @ 15%	TEST PROTOCOL						
MI-0412		12402013	2 COMBINED-		1 "		при опе	Zamana procured	T	1-		1					
MI-0412		1	CYCLE	1	1					PPMVD @ 15%	W/O DUCT-			WITH DUCT-			
MI-0412	LICH BRIDGE		COMPLICATION														
MI-0412 4N-0060	HIGH BRIDGE GENERATING PLANT	8/12/2005	COMBUSTION TURBINES	NATURAL GAS ONLY	3	30 MEGAWATTS	EMISSIONS FOR EACH TURBINE.	GOOD COMBUSTION PRACTICES.	,	02	BURNER	13 PF	M @ 15% O2	BURNER FIRING	n		
	GENERATING PLANT NORTHERN STATES	8/12/2005	TURBINES		3	30 MEGAWATTS	EMISSIONS FOR EACH TURBINE.	GOOD COMBUSTION PRACTICES.		02		13 PF	PM @ 15% O2	BURNER FIRING	0		
	GENERATING PLANT	8/12/2005			3	30 MEGAWATTS	EMISSIONS FOR EACH TURBINE.	GOOD COMBUSTION PRACTICES.	2	PPMVD @ 15%		13 PF	PM @ 15% O2	BURNER FIRING	0		

RBLCID	FACILITY NAME	PERMIT ISSUANCE DATE	PROCESS NAME	PRIMARY FUEL	THROUGHPUT	THROUGHPUT UNIT	PROCESS NOTES	CONTROL METHOD DESCRIPTION	EMISSION LIMIT 1	UNIT	AVG TIME CONDITION	EMISSION LIMIT 2	UNIT	AVG TIME CONDITION	STANDARAD EMISSION LIMIT	UNIT	AVG TIME CONDITION
			COMBINED														
			CYCLE														CTG OIL & DB
			COMBUSTION TURBINE	NATURAL			COMBUSTION TURBINE PERMITTED TO USE NG & NO. 2 OIL; DUCT BURNER PERMITTED TO USE NG & NO. 2 OIL. DUCT BURNER ALSO AUTHORIZED TO			PPMVD @ 15%				CTG NG & DB			NOT OPERATE OR DB NG OR
MN-0071	FAIRBAULT ENERGY PARK	6/5/2007	W/DUCT BURNER		1758	MMBTU/H	COMBUST LIQUID BIOFUEL.		1.	5 02	CTG NG NO DB	3	PPMVD	NG OR OIL	3.	5 PPMVD	OIL
			TURBINE & amp; DUCT BURNER,														
			COMBINED CYCLE, NAT GAS				Each of these units have a natural gas-fired HRSG & a natural gas fired duct burner. Limits for this process	GOOD COMBUSTION PRACTICES AND EFFICIENT PROCESS		nni am o isa							
NC-0101	FORSYTH ENERGY PLANT	9/29/2005	5 3	GAS	1844.3	MMBTU/H	natural gas fired duct burner. Limits for this process are for turbines and duct burners.	DESIGN PROCESS	5.	PPMVD @ 15% 7 O2		0				0	
			TURBINE, COMBINED	NATURAL				CO OXIDATION CATALYST AND		PPMVD @ 15%	AVERAGE OF 3 TESTS-EACH 60						
NJ-0074	WEST DEPTFORD ENERGY	5/6/2009	CYCLE COMBINED	GAS	17298	MMFT3/YR		GOOD COMBUSTION PRACTICES	1.	9 02	MIN	0)			0	
			CYCLE				Natural Gas Usage <= 33,691 MMft^3/yr										
	DODG DOGGE II G		COMBUSTION				per 365 consecutive day period, rolling one	0.11.5			ALTERA OF OF						
	PSEG FOSSIL LLC SEWAREN GENERATING		TURBINE WITH DUCT BURNER -			MMCUBIC FT PER	day basis (per two Siemens turbines and two associated duct burners) The heat input rate of the Siemens turbine will be 2,356 MMBtu/hr(HHV) with a 62.1 duct	Oxidation catalyst and pollution prevention (use of natural gas a clean		PPMVD @ 15%	AVERAGE OF THREE ONE			AVERAGE OF THREE ONE			
*NJ-0081	STATION	3/7/2014	4 SIEMENS COMBINED	Natural Gas	33691	YEAR	burner MMBtwhr(HHV).	burning fuel)		2 02	HOUR TESTS	6.6	lb/hr	HOUR TESTS		0	
			CYCLE				Natural Gas Usage <= 33,691 MMft^3/yr										
			COMBUSTION TURBINE WITH				per 365 consecutive day period, rolling one day basis (per two turbines and two duct										
	PSEG FOSSIL LLC		DUCT BURNER -				burners)	CO Oxidation Catalyst and good			AVERAGE OF			AVERAGE OF			
*NJ-0081	SEWAREN GENERATING STATION	3/7/201/	GENERAL 4 ELECTRIC	Natural gas	22601	MMCUF/vear.	The heat input rate of each General Electric combustion each turbine will be 2,312 MMBtu/hr(HHV) with a 164.4 MMBtu/hr duct burner	combustion practices and use natural gas only as a clean burning fuel	l .	PPMVD @ 15%	THREE ONE HOUR TESTS	7.2	llb/be	THREE ONE HOUR TESTS		0	
-NJ-0081	SIATION	3///201*	+ ELECTRIC	Naturai gas	33691	MINICUP/year.	This is a 427 MW Siemens Combined Cycle Turbine with duct burner	only as a clean burning fuer		2 02	HOUR TESTS	1.2	10/nr	HOUR TESTS		0	
1]	Combined Cycle	1			Heat Input rate of the turbine = 2276 MMbtu/hr (HHV) Heat Input rate of the Duct burner= 777 MMbtu/hr(HHV)				AVERAGE OF			AVERAGE OF			
	WEST DEPTFORD ENERGY		Combustion Turbine					Oxidation catalyst and use of natural gas		1	THREE STACK			THREE STACK			
*NJ-0082	STATION	7/18/2014	with Duct Burner	Natural Gas	20282	MMCF/YR	The fuel use of 20,282 MMCF/YR is for three turbines and three Duct burners. THE FACILITY CONSISTS OF 3 WESTINGHOUSE MODEL 501G GAS COMBINED	a clean burning fuel		1 PPMVD@15%O2	TEST RUNS	4	lb/hr	TEST RUNS		0	
							CYCLE TURBINES (245 MW BASE LOAD), HEAT RECOVERY STEAM GENERATORS, AND STEAM TURBINE GENERATORS (115 MW) WITH SELECTIVE.										
			FUEL				CATYALYTIC REDUCTION (SCR.) FOR NOX EMISSION CONTROL. NOX EMISSIONS				3 HOUR BLOCK			3 HOUR BLOCK			3 HOUR BLOCK
L	ATHENS GENERATING		COMBUSTION	NATURAL			FROM THE TURBINES ARE ADDITIONALLY CONTROLLED BY AMMONIUM HYDROXIDE INJECTION.			PPMVD @ 15%	AVERAGE/			AVERAGE/		PPMVD @ 15%	AVERAGE/
NY-0098	PLANT	1/19/2007	FUEL	GAS	3100	MMBTU/H	HYDROXIDE INJECTION.	GOOD COMBUSTION CONTROL	<u> </u>	4 02	STEADY STATE	16.8	lb/hr	STEADY STATE		4 02	STEADY STATE
NY-0100	EMPIRE POWER PLANT	6/23/2005	COMBUSTION (NATURAL GAS)	NATURAL GAS	2000	MMBTU/H		OXIDATION CATALYST		PPMVD @ 15%	AS PER EPA METHOD 25A	l ,	PPMVD AT 15%	AS PER EPA METHOD 25A			
N1-0100	EMPIRETOWERTEAN	0/23/200.	FUEL	UAS	2093	SIMBTO/II		OAIDATION CATALTST		1 02	METHOD 23A		02	METHOD 23A		0	
			COMBUSTION (NATURAL GAS)	NATURAL						PPMVD @ 15%	AS PER EPA		PPMDV AT 15 %	AS PER EPA			
NY-0100	EMPIRE POWER PLANT	6/23/2005	DUCT BURNING		646	MMBTU/H		OXIDATION CATALYST		7 02	METHOD 25A	7	02	METHOD 25A		0	
			2 Combined Cycle				Two Siemens 2932 MMBtu/H combined cycle combustion turbines, both with 300 MMBtu/H duct burners, with dry low NOx combustors, SCR, and catalytic oxidizer. Will install either 2										
			Combustion				Siemens or 2Mitsubishi, not both (not determined).										
*OH-0352	OREGON CLEAN ENERGY CENTER	6/18/2013	Turbines-Siemens, with duct burners	Natural Gas	51560	MMSCF/rolling 12-MO	Short term limits are different with and without duct burners. This process with duct burners. Two Mitsubishi 2932 MMBtu/H combined cycle combustion turbines , both with 300	oxidation catalyst	5.	9 lb/hr		28.6	T/YR	PER ROLLING 1: MONTHS	1.	9 PPM	PPMVD AT 15% O2
			2 Combined Cycle				Two Mitsubishi 2932 MMBtu/H combined cycle combustion turbines, both with 300 MMBtu/H duct burners, with dry low NOx combustors, SCR, and catalytic oxidizer. Will										
			Combustion				install either 2 Siemens or 2Mitsubishi, not both (not determined).										
*OH-0352	OREGON CLEAN ENERGY CENTER	6/18/2013	Turbines-Mitsubishi, with duct burners	, Natural Gas	47017	MMCCE IE 12 MO	Short term limits are different with and without duct burners. This process with duct burners.	oxidation catalyst		2 11-11-			TAID	PER ROLLING 1: MONTHS	2-	2 DDM	PPMVD AT 15%
*On-0332	CENTER	6/18/2013		Naturai Gas	4/91/	MMSCF/folling 12-MO	Four GE 7FA combined cycle turbines, dry low NOx burners and selective catalytic reduction.	oxidation catalyst	· /-	3 libriir		30	1/1K	MONTHS		2 FFM	.02
	DUKE ENERGY HANGING		Turbines (4) (model GE 7FA) Duct	NATURAL			These limits are for each of the 4 turbines individually, while operating with the duct burners on. This permit is a modification to RBLC OH-0252 to remove hourly restrictions on duct							PER ROLLING 1:	,		
*OH-0356	ROCK ENERGY	12/18/2012	2 Burners On COMBINED	GAS	172	MW	burners.	Using efficient combustion technology	7.	3 lb/hr		44.1	T/YR	MONTHS		0	
			CYCLE														
l			COGENERATION >:25MW	NATURAL				GOOD COMBUSTION	l .	PPMVD @ 15%	3-HR AVG @	5 27		3-HR AVG @			
OK-0129	CHOUTEAU POWER PLANT	1/23/2009	COMBUSTION	GAS	1882	MMBTU/H	SIEMENS V84.3A	GOOD COMBUSTION	0.	3 02	15% O2	5.27	lb/hr	15% O2		0	
			TURBINE & amp; HEAT RECOVERY	,			GE 7241FA TURBINE AND DUCT BURNER.										
			STEAM	NATURAL			COMBUSTION TURBINE - 1,778.5 MMBTU/HR				SEE POLUTANT						
OR-0041	WANAPA ENERGY CENTER	8/8/2005	GENERATOR	GAS	2384.1	MMBTU/H	DUCT BURNER - 605.6 MMBTU/HR	OXIDATION CATALYST	-	0	NOTE	0)			0	-
1			Mitsubishi M501-	1													
			GAC combustion turbine, combined							1	3-HR ROLLING			3-HR ROLLING			
	TROUTDALE ENERGY		cycle configuration	l .				Oxidation catalyst;		PPMVD @ 15%	AVERAGE ON		PPMDV AT 15%	AVERAGE ON			
*OR-0050	CENTER, LLC	3/5/2014	with duct burner.	natural gs	2988	MMBtu/hr	or ULSD; Duct burner 499 MMBtu/hr, natural gas	Limit the time in startup or shutdown.		2102	INCI	5	02	ULSD	+	U.	
			Combined-cycle				Two combine cycle Turbines, each with a combustion turbine and heat recovery steam generator with duct burner. Each combined-cycle process will be rated at 468 MW or less.			1							
	MOXIE LIBERTY		Turbines (2) -				The heat input rating of each combustion gas turbine is 2890 MMBtu/hr (HHV) or less, and the			PPMVD @ 15%	WITHOUT DUCT	-		WITH DUCT			
PA-0278	LLC/ASYLUM POWER PL T MOXIE ENERGY	10/10/2012	Natural gas fired Combined Cycle	Natural Gas	3277	MMBTU/H	heat input rating of each supplemental duct burner is equal to 387 MMBtu/hr (HHV) or less.	Oxidation Catalyst	-	1 02	BURNER	1.5	PPMVD	BURNER	+	0	
L	LLC/PATRIOT		Power Blocks 472	L.			Two natural-gas-fired combined cycle powerblocks where each powerblock consists of a	L		PPMVD @ 15%	WITHOUT DUCT			WITH DUCT			
*PA-0286	GENERATION PLT	1/31/2013	3 MW - (2)	Natural Gas	+ (1	combustion turbine and heat recovery steam generator with duct burner.	CO Catalyst		1102	BURNER	1.5	PPMDV	BURNER	33.	8 T/YR	EACH UNIT
			Combined Cycle Combustion Turbine				Three powerblocks consisting of three (3) natural gas fired F class combustion turbines coupled			1	3 lb/hr, DUCT BURN NOT			10.8 LB/HR, DUCT BURN			
	SUNBURY GENERATION		AND DUCT				with three (3) heat recovery steam generators (HSRGs) equipped			PPMVD@15%	OPERATING,			OPERATING,			
*PA-0288	LP/SUNBURY SES	4/1/2013	BURNER (3)	Natural Gas	2538000	MMBTU/H	with natural gas fired duct burners. The Permittee shall select and install any of the turbine options listed below (or newer versions	Oxidation Catalyst		1 02	15% O2	3.9	PPM	15% O2	1	0	
1				1			of these turbines if the										
1				1			Department determines that such newer versions achieve equivalent or better emissions rates and exhaust parameters)										
							1. General Electric 7FA (GE 7FA)			1							
			COMBINED	1			Siemens SGT6-5000F (Siemens F) Mitsubishi M501G (Mitsubishi G)				WITH OR			INCLUDING			
	HICKORY RUN ENERGY		CYCLE UNITS #1				4. Siemens SGT6-8000H (Siemens H)			PPMVD @ 15%	WITHOUT DUCT	1	TPY 12-MONTH	STARTUP AND			
*PA-0291	STATION	4/23/2013	3 and #2	Natural Gas	3.4	MMCF/HR	The emissions listed are for the Siemens SGT6-8000H unit.	Oxidation Catalyst	1.	5 02	BURNER 12-MONTH	93.44	ROLLING	SHUTDOWN	1	0	-
	BERKS HOLLOW ENERGY		Turbine, Combined							1	ROLLING		PPMVD @ 15%				
PA-0296	ASSOC LLC/ONTELAUNEE	12/17/2013	3 Cycle, #1 and #2	Natural Gas	3046	MMBtu/hr	Equipped with SCR and Oxidation Catalyst		93.8	5 T/YR	TOTAL	1.9	002	1		0	1

RBLCID	FACILITY NAME	PERMIT ISSUANCE	PROCESS NAME	PRIMARY	THROUGHPUT	THROUGHPUT UNIT	DDOCES NOTES	CONTROL METHOD DESCRIPTION	EMISSION LIMIT 1	UNIT	AVG TIME CONDITION	EMISSION	UNIT	AVG TIME CONDITION	STANDARAD EMISSION LIMIT	UNIT	AVG TIME CONDITION
RBLCID	FACILII I NAME	DATE	Turbine, COMBINED	FUEL	Inkoughrui	THROUGHFUT UNIT	FROCESS NOTES	DESCRIPTION	LIMIT	UNII	CONDITION	LIMIT 2	UNII	CONDITION	EMISSION LIMIT	UNII	ON A 12-MONTH
*PA-0298	FUTURE POWER PA/GOOD SPRINGS NGCC FACILITY	3/4/2014	CYCLE UNIT (Siemens 5000)	Natural Gas	2267	MMBtu/hr		CO Catalyst		PPMVD @ 15% O2	@ 15% OXYGEN		7.4 lb/hr	WITH DUCT BURNER	34.	TPY	ROLLING TOTAL
			COGENERATION TRAIN 2 AND 3 (TURBINE AND				GREEN POWER ONE WILL CONSIST OF TWO NOMINALLY RATED 35 MW GAS FRIED TURBINES AND TWO HEAT RECOVERY STEAM GENERATORS, EQUIPPED WITH 312 MINISTURE DUCT BURNERS. HE COMBUSTION TURBINES WILL ONLY BURN PIPELINE O'QUALITY SWEET NATURAL CAS. THE DUCT BURNES WILL ONLY BURN PIPELINE O'QUALITY SWEET NATURAL CAS. THE DUCT BURNES WAS AND COMPLEX GAS. STEAM PRODUCE DID THE BERSO WILL BE USED IN THE CHOCLATE BAYOU WORKS CHEMICAL COMPLEX. THE CHEMICAL COMPLEX WILL CONSUME APPROXIMATELY HALF OF THE ELECTRICAL OUTPUT PRODUCED BY THE TWO NEW TURBINES. EXCESS POWER PRODUCED BY THE COMBUSTION TURBINES WILL BE SOLD TO THE GROW.	BP AMOCO PROPOSES PROPER COMBUSTION CONTROL AS BACT FOR CO AND VOC EMISSIONS									
TX-0497	INEOS CHOCOLATE BAYOU FACILITY	8/29/2006	DUCT BURNER EMISSIONS)	NATURAL GAS	35	MW	THE EMISSIONS ARE PER TRAIN.	FROM THE TURBINES AND DUCT BURNERS.	6.14	lb/hr		40	.88 T/YR)	
TX-0502	NACOGDOCHES POWER STERNE GENERATING FACILITY		WESTINGHOUSE/ SIEMENS MODEI SW501F GAS TURBINE W/416: MMBTU DUCT BURNERS	S NATURAL GAS	190			BURNERS. STEAD FOWER LLC REPRESENTS GOOD COMBUSTION PRACTICES FOR THE CONTROL OF VOLATILE ORGANIC COMPOUND (VOC) EMISSIONS FROM THE COMBUSTION TURBINES AND DUCT FREED HRSG. VOC EMISSIONS FROM THE COMBUSTION TURBINE WILL BE 43 PPMVD	133	lbbr			2.8 T/YR				
170002	CITY PUBLIC SERVICE JK SPRUCE ELECTRICE	0/3/2000	SPRUCE POWER GENERATOR	U/LD	1,50			3.2.1.11.12	15.0	TO IN			2.0 1711			,	
TX-0516	GENERATING UNIT 2	12/28/2005	UNIT NO 2	-			EACH TURRINE/HRSG WILL BE DESIGNED TO OUTPUT 350 MW. TURRINES		29	lb/hr			88 T/YR		1)	
TV 0546	PATTILLO BRANCH	6477000	ELECTRICITY GENERATION	NATURAL	250	. my	BEING CONSIDERED FOR THE PROJECT ARE GE 7FA, GE 7FB, AND SIEMENS SGT6		l .	PPMVD @ 15%	@ 15% O2, 3-HR						
TX-0546	POWER PLANT NATURAL GAS-FIRED POWER GENERATION FACILITY		ELECTRICITY GENERATION	NATURAL GAS	350		SOODE. LUMMAR PUWER PARTINERS PROPOSES TO CONSTRUCT A NATURAL GAS-FIRED COMBINED-CYCLE POWER BLOCK TO BE BUILT AT THE EXISTING SITE IN LAMAR COUNTY, TEXAS. THE NEW POWER BLOCK WILL BE CAPABLE OF PRODUCING EITHER 6:20 OR 910 MEGAWATTS OF ELECTRICITY, DEPENDING UNOW WHICH COMBUSTION TURBINE MODEL OFFION IS CHOSEN. THE PROPOSED PROJECT WOULD INCLUDE TWO COMBUSTION TURBINES (EITHER 170 MW GENERAL ELECTRIC TAS OR 2:50 MW MISTURBINES (EITHER RECOVERY STEAM GENERATORS WITH DUCT BURNERS AND ONE STEAM TURBINE. THE GETFAS WOULD BE CAPABLE OF PRODUCING 6:20 MW OF ELECTRICITY IN COMBINED CYCLE MODE, WHILE THE M501GS WOULD PRODUCE OF THE OWN OF COMBINED CYCLE MODE.	OXIDATION CATALYST GOOD COMBUSTION PRACTICES		PPMVD @ 15%	ROLLING AVG @ 15% O2, 24-HI ROLLING AVG	t.	0				
12-0347	PACIENT	0/22/2005	GENERATION	UAS	230	aiw	FOUR GE PG7121(EA) COMBINE CYCLE TURBINES FIRING NATURAL GAS WILL	GOOD COMBUSTION TRACTICES		02	ROLLING AVG					,	\vdash
TX-0548	MADISON BELL ENERGY CENTER	8/18/2005	ELECTRICITY GENERATION	NATURAL GAS	275	MW	DRECTLY GENERATE 78 MW. EACH HAS A 165 MMBTUHR DUCT BURNER AND HEAT RECOVERY STEAM GENERATOR. TWO HEAGA, WILL TURN ONE 125 MW STEAM TURBNE AND THE OTHER TWO WILL TURN ANOTHER 125 MW STEAM TURBNE. THE TURBNE WAY OPERATE WITHOUT THE DUCT BURNER. The plant will be designed to generate 1,350 normain megawatts of power. There are two configurations exercise either four Stemes SQTE-5000F CTG in combined-cycle mode	GOOD COMBUSTION PRACTICES	2.:	PPMVD @ 15% O2	@ 15% O2, 1-HR ROLLING AVG THREE-HOUR		0			D	
TX-0590	KING POWER STATION	8/5/2010	Turbine	natural gas	1350	MW	(Scenario A) or four GE Frame 7FA CTGs in combined cycle mode (Scenario B). Scenario B also includes one or two auxiliary boilers.	DLN burners in combination with an oxidation catalyst	1.	PPMVD @ 15%	ROLLING AVERAGE		0				
TX-0600	THOMAS C. FERGUSON POWER PLANT CHANNEL ENERGY	9/1/2011	Natural gas-fired	natural gas	390		(2) GE7FA at 195 MW each, (1) steam turbine at 200 MW. Each turbine is equipped with an unfired heat recovery steam generator (HRSG), which provides steam for the steam turbine. The turbine is a Siemens 501F rated at a nominal 180 MW and the duct burner will have a	Natural gas, good combustion practices and oxidation catalyst		PPMVD @ 15% O2 PPMVD @ 15%	3-HR AT 15% OXYGEN		0)	
TX-0618	CENTER LLC	10/15/2012		natural gas	180	MW	maximum design heat input of 475 MMBru/hr. natural gas-fired combined cycle turbine generator with a heat recovery steam generator	Good combustion	-	02	@15% O2		0		-)	
	DEER PARK ENERGY		Combined Cycle				equipped with a duct burner. The turbine is a Siemens 501F rated at a nominal 180 megawatts			PPMVD @ 15%							
TX-0619	CENTER CENTER	9/26/2012	Turbine Cycle	natural gas	180	MW	and the DB will have a maximum design rate capability of 725 million British thermal units per hour	good combustion, use of natural gas		O2 15%	@15% O2		0)	!
*TX-0641	PINECREST ENERGY CENTER	11/12/2013	combined cycle turbine	natural gas	700	MW	The generating equipment consists of two natural gas-fired combustion turbines (CTA), each calculating to a first best recovery seam generator (IRBSO) to produce steam to drive a shared steam turbine generator. The steam turbine is nated at 271 MW of electric output. Three models of combustion turbines are bring considered for this site: the General Electric TPA 05, the Siemens SCTG-5000F(3), and the Siemens SCTG-5000F(5). The final selection of the combustion turbine will not be made until after the permit is issued. Plaint output will range between 637 and 735 MW, depending on the model turbine selected. Dust Burners are rated at 750 MMBuff texth.	oxidation catalyst		PPMVD @ 15% O2	INITIAL STACK TEST, 15% OXYGEN CORRECTED TO		0			0	
	FGE TEXAS POWER I AND						Four (4) Alstom GT24 CTGs, each with a HRSG and DBs, max design capacity 409	Oxidation catalyst, good combustion		PPMVD @ 15%	15% O2, ROLLING 3 HR						
*TX-0660	FGE TEXAS POWER I AND	3/24/2014	Alstom Turbine	Natural Gas	230.7	MW	Four (4) Alstom G124 C1Gs, each with a HRSG and DBs, max design capacity 409 MMBtu/hr	practices good combustion	-	02	AVE AVE		0			0	
*TX-0678	FREEPORT LNG PRETREATMENT FACILITY	7/16/2014	Combustion Turbing	natural gas	87	MW	The exhaust heat from the turbine will be used to heat a heating medium which is used to regenerate rich amine from the acid gas removal system.	oxidation catalyst		PPMVD @ 15%	1 HOUR BASED ON STACK TEST		0				
1A-90/8	I KLISENI PACILITY	7/16/2014	Compussion 3 diffund	naturai gas	8/	772 YY	rescentifier from anime from ma seed gas removal system. The specific equipment includes two combustion turbines (CTs) connected to electric generators, producing between 183 and 232 MW of electricity, depending on ambient temperature and the selected CT. The two IRFGS us due that burners rated at 750 MMBushr each to supplement the heat energy from the CTs. The steam from the two IRFGS is combined and roated to a single steam turbine driving a thrid electric generator with an electricity output capacity of 271 MW. Depending on the selected CT, total plant output at 59ŰF is between 637 MW and 735 MW. The applicant is considering three models of CT; one model will be selected and the permit	tonamed CHITYS		V2	ON STACK TES!		v				
*TV 0700	LA PALOMA ENERGY		(2) combined cycle			MW	revised to reflect the selection before construction begins. The three CT models are: (1)		.	PPMVD @ 15%	@15% O2, 3-HR						
*TX-0708	CENTER SAND HILL ENERGY	2///2013	Natural gas-fired	natural gas	650	IVI W	General Electric 7FA.04; (2) Siemens SGT6-5000F(4); or (3) Siemens SGT6-5000F(5).	oxidation catalyst	† ·	O2 PPMVD @ 15%	ROLLING		U		<u> </u>	,	+
*TX-0709	SAND HILL ENERGY CENTER	9/13/2013	combined cycle turbines	Natural Gas	173.9	MW	General Electric 7FA.04 at 197 MW nominal ouput. The duet burners will be capable of a maximum natural gas firing rate of up to 485 MMBtu/hr (HHV). The duet burners may be food delitting the burner is recommended to the property of 1275.			O2 15%	1HR. AVG.		0		-)	
*TX-0710	VICTORIA POWER STATION	12/1/2014	combined cycle turbine	natural gas	197	MW	fired additional hours; however, total annual firing will not exceed the equivalent of 4,375 hours at maximum capacity per duct burner. The available capacity of the existing steam turbine will be increased from 125 MW in its existing 1x1x1 configuration to approximately 185 MW in the 2x2x1 configuration.	oxidation catalyst		PPMVD @ 15% O2	@15% O2, 3-HR ROLLING AVERAGE		0)	

Miles	$\overline{}$				1					1		1		1				
The content of the	.CID F			PROCESS NAME		THROUGHPUT	THROUGHPUT UNIT	PROCESS NOTES			UNIT			UNIT			UNIT	AVG TIME CONDITION
Management Man	$\overline{}$					İ		The facility will consist of a Mitsubishi Heavy Industries (MHI) J model gas fired combustion		i i						İ		Ť
Manual Property of the Community of th	TI -0712 F	RINIDAD GENERATING ACILITY	11/20/2014	combined cycle turbine	natural gas	497	MW	maximum design capacity of 402 million British thermal units per hour (MMBtu/hr). The	oxidation catalyst	4	PPMVD @ 15% O2	@15% O2 1-HR	0					
March Marc								Each CTG is site-rated at 274 MW gross electric output at 62ŰF ambient temperature. At										
March Marc								this condition, two HRSGs with full duct burner firing produce enough steam to generate an										
Part Part	Т	ENASKA BROWNSVILLE		(2) combined cycle			l	electric output. Under summertime conditions, the net output is approximately 800 MW with		l .	PPMVD @ 15%	@15% O2, 3-HR						
Procedure of the control of the co	-0713 G	ENERATING STATION	4/29/2014	turbines	natural gas	274	MW	the 2x1 CCGT configuration or about 400 MW with the 1x1 CCGT configuration. The gas turbines will be one of three options:	oxidation catalyst	2	02	AVERAGE	0			-		+
March Marc								(1) Two Siemens Model F5 (SF5) CTGs each rated at nominal capability of 225 megawatts										
A TATE OF STATE								(MW). Each CTG will have a duct fired HRSG with a maximum heat input of 688 million British thermal units per hour (MMBtu/hr)										
March Marc																		
March Marc								(2) Two General Electric Model /FA (GE/FA) CTGs each rated at nominal capability of 215 MW. Each CTG will have a duet fired HRSG with a maximum heat input of 523 MMBtu/hr.										
Commonweal Com								(2) Two Mitsubishi Hasay Industry G Emma (MUISOIG) CTGs and rotad at a nominal										
March Marc	s	R BERTRON ELECTRIC		(2) combined cycle				electric output of 263 MW. Each CTG will have a duct fired HRSG with a maximum heat			PPMVD @ 15%							
1989			12/19/2014	Combined-cycle gas	natural gas	240	MW		oxidation catalyst	1	02	@15% O2	0			-		+
Marked M	-0730 C	OLORADO BEND ENERGY ENTER	4/1/2015	turbine electric generating facility	natural gas	1100	MW	combined cycle power plant that uses two combustion turbines and one steam turbine, model GE 7HA.02	SCR and oxidation catalyst	4	PPMVD @ 15% O2	3-HR AVERAGE	0					
MAIN CASE MATERIAL 1985				Combined Cycle				Two norms configuration entions authorized										
Part Part	E	AGLE MOUNTAIN STEAM						Siemens â€" 231 MW + 500 million British thermal units per hour (MMBtu/hr) duct burner										
M. CELLYOUR 1	-0751 EI	LECTRIC STATION	6/18/2015	gas	natural gas	210	MW		Oxidation catalyst	2	PPM		0			-		+
MINING M	I.	ON C. HILL POWER		Combined Cycle Turbines (&et:25				Two power configuration options authorized Sigmens &f** 240 MW ± 250 million British thermal units per hour (MMBtu/hr) duct burner			PPMVD@ 15%							
MERICONSTYPHONE WILLIAM CONTROLL WILLIAM CONTR			10/2/2015	MW)	natural gas	195	MW	GE – 195 MW + 670 MMBtu/hr duct burner	oxidation catalyst	2	02	2 III 4110	0		A FIRE A TAG	(
Market M				CYCLE TURBINE								(WITHOUT			(WITH DUCT			
BOUNDER COOKEY 1985 1985	.0315 P	VARREN COUNTY POWER LANT - DOMINION	12/17/2010	& DUCT BURNER 3	Natural Gas	2996	MMRTU/H	Emissions are for one of three units (Mitsubishi natural gas-fired combustion turbine (CT)		2.6	lb/hr	DUCT BURNER FIRING)	61	lb/hr	BURNER FIRING)			
9.000 PARTAINS 19200				COMBUSTION							DDM//D @ 150/	3 H	-	DDM(V/D @ 149/				
Part Part			3/12/2013		Natural Gas	3442	MMBTU/H	Inree (3) Mitsubishi M501 GAC combustion turbine generators with HKSG duct burners (natural gas-fired).	practices.	0.7	O2 15%		1.6	O2 02	3 H AVG/WITH	(
NAMES OF CHEST NOT STAND (NEEDLY COUNTY				GE 7FA COMBUSTION														
December No. Process				TURBINE & amp;				THREE INCIDENTICAL CT & HODG UNITS FACIL CT WILL HAVE AN ANNUAL										
No. NO.NO.NELE COMBINED Condessed Cycle Co				STEAM	NATURAL			AVERAGE CAPACITY RATING OF 1614 MMBTU/HR. EACH HRSG DUCT BURNER										
Windows Content Cont	0328 C	OGENERATION PROJECT	1/11/2005	GENERATOR	GAS	174	MW	WILL HAVE A MAXIMUM FIRING RATE OF 105 MMBTU/HR. This entry is for both of two identical units at the facility.	OXIDATION CATALYST	0			0			(*SEE NOTES
Windows Content Cont		OUNDSVILLE COMBINED		Combined Cuele				Naminal 107 mW/ Canand Electric Frame 7FA 04 Turking m/ Dust Durage throughout	Oxidation Catalant & Good Combustion									
MINISTATION \$2,932 Testes (1991) Name (2n) 100 1	V-0025 C	YCLE POWER PLANT	11/21/2014	Turbine/Duct Burner	Natural Gas	2419.61	mmBtu/Hr	denotes aggregate heat input of turbine and duct burner (HHV).		5.3	lb/hr		0.0022	LB/MMBTU		2	PPM	@ 15% O2
Material Traing 14 Confection Tables Name Grow 100 New York 10			8/28/2012	Combined Cycle Turbine (EP01)	Natural Gas	40	MW		Oxidation Catalyst	3	PPMVD @ 15% O2	1-HOUR	3	lb/hr		14.7	T/YR	
Propose Development Labor Labor Condesided Tubbos Condesided Tubbos Named Cost Labor						1000	MW		Low NOv Burners	0.003	lls/MMRtu	1-hr average; Duct	5.92	llb/hr	1-hr average; Duc	t		
Popular Power Scient Inflates Popular Power Scient Inflate	Fe	ootprint Power Salem Harbor								0.000		1-hr average; Duct			1-hr average; Duc	t		
Cocket Valver Energy Center Combestion Tables Neural Gas 100 MeV Combestion Canalyse Combestion Tables Neural Gas 100 MeV Combestion Tab	Fe	ootprint Power Salem Harbor								5.4	PPMVD @ 15%	1-hr average; Duct			1-hr average; Duc	t		+
Cristed Valler Farrory Center Combustin Tubble Natural Gas 1000 MW Outdoor Cambre 2 C	D	Nevelopment LP		Combustion Turbine	Natural Gas	346	MW		Low NOx Burners	1.7	O2 PPMVD @ 15%	Burners On 1-hr average: Duct	0.016	lb/MW-hr	Burners On			+
Efficiency Center Combostic Turbon Name of	C	ricket Valley Energy Center		Combustion Turbine	Natural Gas	1000	MW		Oxidation Catalyst	2	02	Burners On						
Hardgor Constraint, LEC	E	ffingham County Power		Combustion Turbine	Natural Gas	180	MW		Oxidation Catalyst	2	O2	Burners On						
Hearingon Boach Energy Combustion Turbine Com	Н	lawkeye Generating, LLC		Combustion Turbine	Natural Gas					0.0038		Burners On						
Non-New Reserve Center Contention Turbus Natural Gas Contention Turbus Natural Gas 227 Millious Contention Turbus Natural Gas 228 Millious Contention Turbus Natural Gas 228 Millious Contention Turbus Natural Gas 229 Millious Contention Turbus Natural Gas 229 Millious Contention Turbus Natural Gas 229 Millious Contention Turbus Natural Gas 220 Milliou	H	luntington Beach Energy		Combustion Turbine	Natural Gas	939	MW				PPMVD @ 15%	3-hr average; Duct						
Hea Newark Energy Center Combustion Turbins Natural Gas 224 M/Blurby Combustion Turbins Natural Gas 150 M/W Combustion Turbins Natural Gas 150 M/W Combustion Turbins Natural Gas 160 M/W Combustion Turbins Natural Gas		ioject		Constanton rutonic	Tutulai Cas	/3/					DELLE COLON	Avg of 3 stack test						
Salama Energy Center Combustion Turbine Natural Gas 2247 MMBsturbr Oxidation Catalysta 1/2 1/2 more reling	Н	less Newark Energy Center		Combustion Turbine	Natural Gas					2	02	On						
Ralams Energy Center LLC	к	alama Energy Center		Combustion Turbine	Natural Gas	2247	MMBtu/hr		Oxidation Catalyst		PPMVD @ 15% O2	1-hr average	3.2	lb/hr	1-hr average		<u></u>	
Lawrence Energy Center LLC										470	tny							
Lawrence Energy Center LLC									- Cumya		II A O ODe			D.A.,				T
Lawrence Energy Center LLC Combustion Turbins Natural Gas Lawrence Energy													4.2	10/HF	1			+
Lawrence Energy Center LLC Combustion Turbins Natural Gas 180 MW	L	awrence Energy Center LLC		Combustion Turbine	Natural Gas	180	MW						4.2	lb/hr			-	+
Lawrence Energy Center LLC	L	awrence Energy Center LLC		Combustion Turbine	Natural Gas	180	MW			0.0375	lb/MMBtu				1			+
Lawrence Encopy Center LLC Combustion Turbins Natural Gas 180 MW	L	awrence Energy Center LLC		Combustion Turbine	Natural Gas	180	MW			0.015	lb/MMBtu							
Lawrence Energy Center LLC Combustion Turbins Natural Gas 180 MW	L	awrence Energy Center LLC		Combustion Turbine	Natural Gas	180	MW			0.0105	lb/MMBtu		30.7	lb/hr				
GenCom Middle(own LLC Combustion Turbins Natural Gas						180	MW			0.00517	lb/MMBtu		30.7	lb/hr				
PRIVICE Privity (@ 15% 14.1 16/2 1													50.7					
Sevier Power Company Power Plant Combustion Turbine Natural Gas FOUR (4) NATURAL GAS FOUR (4) NATURAL GAS COMBNED COMBNED COMBNED CYCLE EMISSION'S CONTROLLED BY VISITEM (SCR#) ALONG WITH CO AND VOC EMISSION'S CONTROLLED BY STEEM (SCR#) ALONG WITH CO AND VOC EMISSION'S CONTROLLED BY STEEM (SCR#) ALONG WITH CO AND VOC EMISSION'S CONTROLLED BY STEEM (SCR#) ALONG WITH CO AND VOC EMISSION'S CONTROLLED BY STEEM (SCR#) ALONG WITH CO AND VOC EMISSION'S CONTROLLED BY STEEM (SCR#) ALONG WITH CO AND VOC EMISSION'S CONTROLLED BY STEEM (SCR#) ALONG WITH CO AND VOC											PPMVD @ 15%							+
Plant Combustion Turbine Natural Gas 580 MW	Pa S	acitiCorp Energy evier Power Company Power								2.8		3-hour	14.1	lb/hr				+
FOUR (4) NATURAL GAS NATURAL GAS COMBNED CYCLE EMISSION'S CONTROLLED BY OXIDATION CATALYST SYSTEMS (GATHE) IN CYCLE EMISSION'S CONTROLLED BY OXIDATION CATALYST SYSTEMS (GATHE) IN CYCLE MISSION'S CONTROLLED BY OXIDATION CATALYST SYSTEMS (GATHE) IN	PI	lant		Combustion Turbine	Natural Gas	580	MW	EACH TURBINE IS EQUIPED WITH DRY LOW NOX BURNERS. NATURAL GAS		3	02	3-hr average			1			+
COMBNED CATALYTIC REDUCTION SYSTEMS (SCR##) ALONG WITH CO AND VOC CYCLE EMISSION'S CONTROLLED BY OXIDATION CATALYTS SYSTEMS (CAT##) IN				FOUR (4)				FIRED DUCT BURNERS, AND A HEAT RECOVERY STEAM GENERATOR										
CYCLE EMISSIONS CONTROLLED BY OXIDATION CATAYLST SYSTEMS (CAT##) IN				COMBINED				CATALYTIC REDUCTION SYSTEMS (SCR##) ALONG WITH CO AND VOC										
I IST, JOSEPH ENEURY I COMBUSTION INATURAL IEACH TURBINE, EACH STACK HAS CONTINUOUS EMISSIONS MONITORS FOR 1 I IPPMVD (d) 15% I	9	T. JOSEPH ENEGRY		CYCLE COMBUSTION	NATURAL			EMISSSIONS CONTROLLED BY OXIDATION CATAYLST SYSTEMS (CAT##) IN EACH TURBINE. EACH STACK HAS CONTINUOUS EMISSIONS MONITORS FOR			PPMVD @ 15%							
GENERAL COMBONS AND EACH ENGINEER DESCRIPTION OF THE PROPERTY					GAS	2300	MMBTU/H		OXIDIZED CATALYST	2	02	3 HOURS						

						1				1		1	_		1		
RBLCID	FACILITY NAME	PERMIT ISSUANCE DATE	PROCESS NAME	PRIMARY FUEL	THROUGHPUT	THROUGHPUT UNIT	PROCESS NOTES	CONTROL METHOD DESCRIPTION	EMISSION LIMIT 1	UNIT	AVG TIME CONDITION	EMISSION LIMIT 2	UNIT	AVG TIME CONDITION	STANDARAD EMISSION LIMIT	UNIT	AVG TIME CONDITION
			COMBINED		I				1		3 HR AVERAGE						$\overline{}$
			CYCLE TURBINE								(WITH DUCT						
	WARREN COUNTY POWER		& DUCT				Emissions are for one of three units (Mitsubishi natural gas-fired combustion turbine (CT)	Oxidation catalyst and good combustion			BURNER						
	PLANT - DOMINION		BURNER, 3	Natural Gas	29	96 MMBTU/H	generator, Model M501 GAC).	practices.	1.6	O2	FIRING)						
	CPV Valley Energy Center									PPMVD @ 15%							
	Wawayanda, NY			Natural Gas	6	30 MW			0.7	02	1-hr average						
	CPV Valley Energy Center									PPMVD @ 15%							
	Wawayanda, NY		Combustion Turbine	Natural Gas	6	30 MW			1.8	O2	1-hr average						
	Woodbridge Energy Center					07 100 1			l .	PPMVD @ 15% O2							
	(CPV Shore, LLC)		Combustion Turbine	Natural Gas	2,8	07 MMBtu/hr			2	PPMVD @ 15%							
	Woodbridge Energy Center (CPV Shore, LLC)					07 MMBtu/hr			Ι .	PPMVD @ 15%							
	(CPV Shore, LLC)			Natural Gas	2,3	0 / MMBtu/hr			 	02							
			COMBINED HEAT														
	1		AND POWER										1				
	1		DUAL-FIRED										1				
	PA STATE UNIV/UNIV		COMBUSTION							PPMVD@15%							
	PARK CAMPUS		TURBINE	Natural Gas	86	29 MMBtu/hr			10.8								
	TARK CAMI OS		TORDINE	Ivaturai Gas	80.	2.9 MINIDIUM			10.0	PPMVD @ 15%							
	Hummel Station LLC		Combustion Turbine	Natural Gas	2 254	00 MMBtu/hr			3.9	02		10	7 lb/hr				
	Transport Station Edit		Companion raiding	- tuturur Ous	2,2,71	oo maadaan				PPMVD @ 15%		10.	, 10.11				
	Hummel Station LLC		Combustion Turbine	Natural Gas	2.254	00 MMBtu/hr			1	02			3 lb/hr				
										PPMVD @ 15%							
	Tenaska Partners LLC		Combustion Turbine	Natural Gas	31	47 MMBtu/hr			2.4	02							
										PPMVD @ 15%							
	Tenaska Partners LLC		Combustion Turbine	Natural Gas	31	47 MMBtu/hr			1.4	02							
	UGI Development Co/ Hunlock									PPMVD @ 15%							
	Creek			Natural Gas	47	.2 MMBtu/hr			1.2	O2	>32 °F						
	UGI Development Co/ Hunlock									PPMVD @ 15%							
	Creek			Natural Gas	47	.2 MMBtu/hr			4	O2	<32 °F						
	Hawkeye Generating, LLC			Natural Gas		15 MW			0.0038	lb/MMBtu		54.1					
	Hawkeye Generating, LLC			Natural Gas	- 6	15 MW			0.0016	lb/MMBtu		54.1	6 tpy				
	Huntington Beach Energy									PPMVD @ 15%							
	Project			Natural Gas	9	39 MW (net)			1	O2 PPMVD @ 15%	1-hr rolling						
	Huntington Beach Energy Project			l		39 MW (net)			l .	PPMVD @ 15%	3-hr rolling						
	Project			Natural Gas	,	39 MW (net)			-	PPMVD @ 15%	5-hr rolling						
	Hess Newark Energy Center		Combustion Turbine	Natural Con-		20 MMBtu/hr			l ,	m vD @ 1576		0.00	l lb/MMBtu				
	ness Newark Energy Center		Compustion Turbine	Naturai Gas	- 23	20 MINIDIWIII			+ '	PPMVD @ 15%		0.00	1 ID/MMDtu				
	Hess Newark Energy Center		Combustion Turbine	Natural Gas	1 22	66 MMBtu/hr			,	O2	1	0.002	5 lb/MMBtu	1		l	1
	THE STREET, ST		Companion ruibine	runnii Gas		OV MINISTERIE			 	-	3-hour block	0.002	January 111111111111111111111111111111111111				+
	1									PPMVD @ 15%	average; average of	f	1				
	York Energy Center Block 2	6/15/2015	s	1	2513	2.5 MMBtu/hr	firing NG with duct burner	1	1 9	02	3 test runs	1				l	1
	Shell Chemical	0/13/2013			1 200				T				1				1
	Appalachia/Petrochemicals									PPMVD @ 15%			1				
	Complex	6/18/2015	5		6	64 MMBtu/hr	each of the combustion turbines with duct burners		1	02	1-hour average						
	Calpine/Bethlehem Energy									PPMVD @ 15%							
	Center			1	1	22 MW			1.2	02		1	1				
										PPMVD @ 15%							
	Liberty Electric Power, LLC				19	54 MMBtu/hr	Without DB		1.4	O2			1				
										PPMVD @ 15%							
	Liberty Electric Power, LLC		1		19	54 MMBtu/hr	With DB		4.7	02			1				

RBLCID	FACILITY NAME	PERMIT ISSUANCE DATE	PROCESS NAME	PRIMARY FUEL TH	ROUGHPUT THROUGHPUT UNIT	PROCESS NOTES	CONTROL METHOD DESCRIPTION	EMISSION LIMIT 1	UNIT	AVG TIME CONDITION	EMISSION LIMIT 2	UNIT	AVG TIME CONDITION	STANDARAD EMISSION LIMIT	UNIT	AVG TIME CONDITION
CT-0161	KILLINGLY ENERGY CENTE	-	7 Natural Gas w/o Du		2969 MMBtu/hr	Throughput is for turbine only	Oxidation Catalyst	+	7 PPMVD @15% O		LIMIT 2	0	CONDITION	EMISSION EIMIT	0	COMBITION
FL-0356	OKEECHOBEE CLEAN ENER	3/9/20	6 Combined-cycle ele	c Natural gas	3096 MMBtu/hr per turbine	3-on-1 combined cycle unit. GE 7HA.02 turbines, approximately 350 MW per turbine. Total u	r Complete combustion minimizes VOC		1 PPMVD@15%O2	GAS OPERATION		2 PPMVD@15%O2	ULSD OPERATIO		0	
*FL-0363 FL-0364	DANIA BEACH ENERGY CES SEMINOLE GENERATING ST	12/4/20	7 2-on-1 combined cy	c Natural gas	4000 MMBtu/hr 3514 MMBtu/hr	Two nominal 430 MW combustion turbines, coupled to a steam turbine generator	Clean fuels		1 PPMVD@15% O	FOR NATURAL G	2.	6 PPMVD@15% O	FOR OIL OPERAT		0	
FL-0364	SEMINOLE GENERATING ST	3/21/20	8 2-on-1 natural gas c	o Naturai gas	3514 MMBtwhr	Two GE 7HA.02 combustion turbines, each rated at 415 MW. Total unit capacity is approxim Two (2) combined-cycle natural gas-fired combustion turbine generators, each with a heat	Oxidation catalyst		1 PPMVD(@15% O.	WITHOUT DUCT		2 PPMVD@15% O	2 CI + DUCI BURI	1	0	
						recovery steam generator (CTGHRSG).										
						Plant nominal 1,150 MW electricity production. Turbines are each rated at 3,658 MMBTU/E and HRSG duct burners are each rated at 800 MMBTU/H.										
						and TRSG duct bulliers are each fated at 800 WINESTONE.	Oxidation catalyst technology and good									
*MI-0435	BELLE RIVER COMBINED C	7/16/20	8 FGCTGHRSG (EU	Natural gas	0	The HRSGs are not capable of operating independently from the CTGs.	combustion practices.	0.002	6 LB/MMBTU	EACH UNIT; HOU	0.001	LB/MMBTU	EACH UNIT W/O		0	
*PA-0310	CPV FAIRVIEW ENERGY CE	09/02/2016 +	Combustion turbine	a Natural gas	0	Emission limits are for each turbine fueled by NG and operating without duct burner being fire	d and do not include startup/shutdown emis	S2	1 PPMDV @ 15% C	12		0		(0	
TX-0788 TX-0789	NECHES STATION DECORDOVA STEAM ELECT	3/24/20	6 Combined Cycle &a 6 Combined Cycle &a	natural gas	231 MW 231 MW	2 CTGs to operate in simple cycle & combined cycle modes. 231 MW (Siemens) or 210 MW 2 CTGs to operate in simple cycle & combined cycle modes. 231 MW (Siemens) or 210 MW	OXIDATION CATALYST	1	2 PPM 2 PPM				-	-		
17-0/89			o Combined Cycle &	ii iiaturar gas		2 C FGs to operate in simple cycle & combined cycle modes. 231 WW (Stemens) of 210 WW	Dry low NOx burners and good		2 11 W			1		,	1	
TX-0790	PORT ARTHUR LNG EXPOR	2/17/20	6 Refrigeration Comp	renatural gas	10 M TONNES/YR	Four GE Frame 7E gas turbines for refrigeration and compression at the site	combustion practices		2 PPM	3-HR AVG		0		(0	
TX-0790	PORT ARTHUR LNG EXPOR	2/17/20	6 Simple Cycle Electi	natural gas	34 MW	Nine GE PGT25+G4 gas turbines for electrical generation at the site at 34 MW/turbine	OXIDATION CATALYST		2 PPM	3-HR AVERAGE		0		(0	
TX-0817	CHOCOLATE BAYOU STEAM	2/17/20	7 Combined Cycle Co	NATURAL GAS	50 MW	2 UNITS EACH 50 MW GE LM6000	OXIDATION CATALYST Oxidation Catalyst and good combustion		1 PPMDV			0			0	
*VA-0325	GREENSVILLE POWER STAT	6/17/20	6 COMBUSTION TU	Finatural gas	3227 MMBTU/HR	3227 MMBTU/HR CT with 500 MMBTU/HR Duct Burner, 3 on 1 configuration.	practices	1.	4 PPMVD		214.	8 T/YR	PER TURBINE-12		0	
		1				Nominal 640 mWe										
l	I					All emission limits steady-state and include 1000 mmBtu/hr Duct Burner in operation	Oxidation Catalyst, Good Combustion	l						l .		
*WV-0029	HARRISON COUNTY POWER OTAY MESA ENERGY	3/27/20	8 GE 7HA.02 Turbing	Natural Gas	3496.2 mmBtu/hr	Short Term startup and shutdown limits in lb/event given in permit.	Practices	11.	4 LB/HR PPMVD@15%		54.	8 TONS/YEAR			2 PPM	
CA-1177	CENTER LLC	7/22/20	Gas turbine 9 combined cycle	Natural gas	171.7 MW				2 OXYGEN	1 HOUR		0			0	
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				Source test results:										
			Gas turbine			1.45 ppm NOx @ 15% O2 or 2.19 lb/hr			PPMVD AT 15%							
CA-1178	APPLIED ENERGY LLC	3/20/20	9 combined cycle NATURAL-GAS	Natural gas	0	<0.22 ppm VOC @15%O2 or <0.12 lb/hr	Oxidation catalyst NATURAL GAS QUALITY GAS		2 02	1 HOUR		0		-	0	
			FIRED				ONLY FUEL GOOD COMBUSTION									
I	ROCKY MOUNTAIN		COMBINED-			ONE NEW COMBINED-CYCLE TURBINE IS BEING ADDED TO AN EXISTING	PRATICES AND OXIDATION	1	1	1		1			1	1
CO-0056	ENERGY CENTER, LLC	5/2/20	6 CYCLE TURBINE	NATURAL GAS	300 MW	FACILITY.	CATALYST.	0.002	9 LB/MMBTU			0	1	-	0	
			Four combined			The open two comments of the state of the st				AVE OVER						
*CO-0073	PUEBLO AIRPORT GENERATING STATION	7/22/20	cycle combution	natural gas	373 mmbtu/hr	Three GE, LMS6000 PF, natural gas-fired, combined cycle CTG, rated at 373 MMBtu per	good combustion control and catalytic oxidation	1	PPMVD AT 15%	STACK TEST LENGTH		ام			ا	1
-00-0073	GENERATING STATION	1/22/20	0 turbines	naturai gas	3/3 mmoturir	hour each, based on HHV and one (1) HRSG each with no Duct Burners 500 MMBTU/hr Gas Turbine (Model: GE LM6000) rated at 52 MW and 155 MMBTU/hr	oxidation		4102	LENGIH		0		,	0	
	NRG ENERGY CENTER					Heat Recovery Steam Generator rated at 18 MW. The unit is required to operate a certified				1 HOUR						
*DE-0023	DOVER	10/31/20	2 UNIT 2- KD1	Natural Gas	655 MMBTU/H	CEMS and COMS. Basis for the emission standard is either NSPS Subpart KKKK or Department BACT	Oxidation catalyst system	6	4 lb/hr	AVERAGE		0			0	
						Basis for the emission standard is either NSPS Subpart KKKK or Department BACT										
						The BACT emission standards for NOX while operating in combined cycle are more stringent										
			Combine cycle			than the corresponding Subpart KKKK emissions standards of 15 and 42 ppmvd @15% O2 on			PPMVD @ 15%							
FL-0337	POLK POWER STATION	10/14/20	2 power block (4 on 1) natural gas	1160 MW	than the corresponding Subpart KKKK emissions standards of 15 and 42 ppmvd @15% O2 on a 30-day rolling average for natural gas and fuel oil, respectively.	fuel Sulfur limits	1	4 02			0			0	
			COMBINED													
	PLANT MCDONOUGH		CYCLE COMBUSTION			6 TURBINES, 254 MW EACH (NOT INCLUDING STEAM RECOVERY), LIMITS ARE FOR EACH TURBINE (MITSUBISHI MODEL M501G). BACKUP FUEL FOR TWO			PPMVD @ 15%	3-HOUR WITH		PPMVD @ 15%	3-HOUR, WITHOUT DUCT			
GA-0127	COMBINED CYCLE	1/7/20		NATURAL GAS	254 MW	TURBINES IS ULTRA-LOW SULFUR FUEL OIL	OXIDATION CATALYST	1 1	802	DUCT BURNER		102	BURNER		ا	
			8 TURBINE COMBINED									1				
			CYCLE													
			COMBUSTION TURBINE -													
			ELECTRIC							3-HOUR						
			GENERATING				GOOD COMBUSTION PRACTICES.		PPMVD@ 15%	AVERAGE/COND						
GA-0138	LIVE OAKS POWER PLANT	4/8/20	0 PLANT	NATURAL GAS	600 MW		CATALYTIC OXIDATION		2 02	ITION 2.11		0			0	
	I								I	AVG. OF 3 ONE			l			
*IA-0107	MARSHALLTOWN GENERATING STATION	4/14/20	Combustion turbine		2258 mmBtu/hr	two identical Siemens SGT6-5000F combined cycle turbines without duct firing, each at 2258 mmBtu/hr generating approx. 300 MW each.	catalytic oxidizer		PPMVD @ 15%	HOUR TEST RUNS	71	TON/YR	12-MONTH ROLLING	l .		
*IA-0107	GENERATING STATION	4/14/20	4 #1 - combined cycle	naturai gas	2238 ministurir	mmsturir generating approx. 500 M w each.	catalytic oxidizer		1102	AVERAGE 0F 3	/1.	2 TON TR	12-MONTH	'	"	
	MARSHALLTOWN		Combustion turbine						PPMVD @ 15%	ONE-HOUR TEST			ROLLING			
*IA-0107	GENERATING STATION	4/14/20	4 #2 -combined cycle	natural gas	2258 mmBtu/hr				1 02	RUNS	71.	2 TON/YR	TOTAL		0	
LA-0192	CRESCENT CITY POWER	6/6/200	GAS TURBINES - 5 187 MW (2)		2006 MMBTU/H		CO OXIDATION CATALYST AND GOOD COMBUSTION PRACTICES		8 lb/hr	HOURLY MAXIMUM	12	3 T/YR	ANNUAL MAXIMUM		1 PPM @ 15% O2	ANNUAL AVERAGE
LA-0192	CRESCENT CHTTTOWER	0/0/20	Combined Cycle		2000 MMB1C/II		GOOD COMBOSTRONT RACTICES	-	.o itviii	MAXIMOM	12.	5 17 1K	MAXIMOM		1 11 M (a) 13 / a O2	AVERAGE
			Refrigeration													
	SABINE PASS LNG		Compressor				Good combustion practices and fueled by			HOURLY						
LA-0257	TERMINAL	12/6/20	1 Turbines (8)	natural gas	286 MMBTU/H	GE LM2500+G4 Throughput is 2,237 MMBTU/H for each CTG	natural gas	0.6	6 lb/hr	MAXIMUM		0		-	0	
			Natural gas fueled			Equipment is permitted as following flexible group (FG):		1	1	1		1			1	1
	1	1	combined cycle			FG-CTG1-2: Two natural gas fired CTGs with each turbine containing a heat recovery steam		1	1	L				1		1
	MIDLAND COGENERATION		combustion turbine generators (CTG)			generator (HRSG) to operate in combined cycle. The two CTGs (with HRSG) are connected		1	1	EACH CTG; TEST						
*MI-0405		4/23/20	generators (CTG) 3 with HRSG	Natural gas	2237 MMBTU/H	to one steam turbine generator. Each CTG is equpped with a dry low NOx (DLN) burner and a selective catalytic reduction (SCR) system.	Good combustion practices	0.001	8 LB/MMBTU	PROTOCOL		ol			ol	1
	VENTURE NORTHERN STATES	123/20				,		5.00		1						1
	POWER CO. DBA XCEL		TURBINE,					1	L							
NO. OCC.	ENERGY - RIVERSIDE PLANT		COMBINED	NATURAL CO.	1005	TWO COMPLETION TURBINGS TUROUGURY FOR FIGUR	COOD COMPLICATION PRINCES	1 .	PPMVD @ 15%	3-HR BLOCK		ا			ا	1
MN-0066	PLANI	5/16/20	6 CYCLE (2) TURBINE,	NATURAL GAS	1885 mmbtu/h	TWO COMBUSTION TURBINES, THROUGHPUT FOR EACH	GOOD COMBUSTION PRACTICES	+ 4	.0102	AVERAGE OF 3		4	+	<u> </u>	1	
I			COMBINED				CO OXIDATION CATALYST AND	1	PPMVD @ 15%	TESTS-EACH 60		1			1	1
NJ-0074	WEST DEPTFORD ENERGY	5/6/20	9 CYCLE	NATURAL GAS	17298 MMFT3/YR	TILL AND AND AND AND AND AND AND AND AND AND	GOOD COMBUSTION PRACTICES	1	9 02	MIN		0	1	-	0	
						This is a 427 MW Siemens Combined Cycle Turbine with duct burner Heat Input rate of the turbine = 2276 MMbtu/hr (HHV)		1	1	AVERAGE OF			AVERAGE OF			
			Combined Cycle			Heat Input rate of the turbine = 2276 MMbtu/hr (HHV) Heat Input rate of the Duct burner= 777 MMbtu/hr(HHV)		1	1	THREE ONE		1	THREE ONE		1	1
	WEST DEPTFORD ENERGY		Combustion Turbino	.			Oxidation catalysts and use of Natural	1	PPMVD @ 15%	HOUR STACK		1	HOUR STACK		1	1
*NJ-0082	STATION	7/18/20	4 without Duct Burne	Natural Gas	20282 MMCF/YR	The fuel use of 20,282 MMCF/YR is for three turbines and three Duct burner. Four GE 7FA combined cycle turbines, dry low NOx burners and selective catalytic reduction.	gas a clean burning fuel	0	.7 02	TESTS	2.1	l lb/hr	TESTS		0	
				T		Four GE 7FA combined cycle turbines, dry low NOx burners and selective catalytic reduction.				7 HOLD BY OCC.			2 HOLD BY OC.			2 HOUR BY C.
	ATHENS GENERATING		FUEL COMBUSTION			These limits are for each of the 4 turbines individually, while operating with the duct burners on. This permit is a modification to RBLC OH-0252 to remove hourly restrictions on duct		1	PPMVD @ 15%	3 HOUR BLOCK AVERAGE/		1	3 HOUR BLOCK AVERAGE/		PPMVD @ 15%	3 HOUR BLOCK AVERAGE/
	PLANT	1/19/20		NATURAL GAS	3100 MMBTU/H	burners.	GOOD COMBUSTION CONTROL	1	4 02	STEADY STATE	16	8 lb/hr	STEADY STATE		4 02	STEADY STATE
NY-0098			FUEL													
NY-0098	TEAN		COMBUSTION	NATURAL CO.	2000 2 0 0077777		OVIDATION CATALVOT	1	PPMVD @ 15%	AS PER EPA		PPMVD @ 15%	AS PER EPA		ا	1
			5 (NATURAL GAS)	NATURAL GAS	2099 MMBTU/H	Two Mitsubishi 2932 MMBtu/H combined cycle combustion turbines, both with 300	OXIDATION CATALYST	1	1102	METHOD 25A		1102	METHOD 25A	-	U	-
	EMPIRE POWER PLANT	6/23/20		1		MMBtu/H duct burners, with dry low NOx combustors, SCR, and catalytic oxidizer. Will		1	1							
		6/23/20	2 Combined Cycle			The second secon		1		1		1	1	1	1	
	EMPIRE POWER PLANT	6/23/20	Combustion			install either 2 Siemens or 2Mitsubishi, not both (not determined).										Inname and age
NY-0100	EMPIRE POWER PLANT OREGON CLEAN ENERGY		Combustion Turbines-Siemens,		MMSCF/rolling 12-	Short term limits are different with and without duct burners.							PER ROLLING 12			PPMVD AT 15%
NY-0100	EMPIRE POWER PLANT		Combustion	Natural Gas	MMSCF/rolling 12- 515600 months	install either 2 Siemens or 2Mitsubish, not both (not determined). Short term limits are different with and without duet burners. This process without duet burners.	oxidation catalyst	3	9 lb/hr		28.	6 T/YR	PER ROLLING 12 MONTHS		I PPM	PPMVD AT 15% O2
NY-0100	EMPIRE POWER PLANT OREGON CLEAN ENERGY		Combustion Turbines-Siemens,	s Natural Gas		Short term limits are different with and without duct burners. This process without duct burners.	oxidation catalyst	3	9 lb/hr		28.	6 T/YR		:	1 PPM	O2 O2
NY-0100	EMPIRE POWER PLANT OREGON CLEAN ENERGY		Combustion Turbines-Siemens, 3 without duct burners 2 Combined Cycle	s Natural Gas		Short term limits are different with and without duet burners. This process without duet burners. Two Mitsubishi 2932 MMBruH combined cycle combustion turbines, both with 300 MMBruH duet burners, with dry low NOx combustors, SCR, and catalytic oxidizer. Will	oxidation catalyst	3	.9 lb/hr		28.	6 T/YR			l PPM	O2 O2
NY-0100 NY-0100 *OH-0352	EMPIRE POWER PLANT OREGON CLEAN ENERGY CENTER		Combustion Turbines-Siemens, 3 without duct burners 2 Combined Cycle Combustion	s Natural Gas		Short term limits are different with and without duct burners. This process without duct burners. This process without duct burners. Two Mitsubsids 2932 MMBftuH combined cycle combustion turbines, both with 300 MMBftuH duct burners, with dry low NOx combusters, SCR, and catalytic oxidizer. Will install either 2 Stemes or 2 Mitsubsids, not both (not determined).	oxidation catalyst	3	.9 lb/hr		28.	6 T/YR	MONTHS		l PPM	02
NY-0100	EMPIRE POWER PLANT OREGON CLEAN ENERGY	6/18/20	Combustion Turbines-Siemens, 3 without duct burners 2 Combined Cycle	,	515600 months	Short term limits are different with and without duet burners. This process without duet burners. Two Mitsubishi 2932 MMBruH combined cycle combustion turbines, both with 300 MMBruH duet burners, with dry low NOx combustors, SCR, and catalytic oxidizer. Will	oxidation catalyst	3.	9 lb/hr			6 T/YR			l PPM	O2 PPMVD AT 15%

	1	IPERMIT ISSUANCE						ICONTROL METHOD	IFMISSION		IAVG TIME	TEMISSION		IAVG TIME	ISTANDARAD		AVG TIME
RBLCID	FACILITY NAME	DATE	PROCESS NAME	PRIMARY FUEL	THROUGHPUT	THROUGHPUT UNIT	PROCESS NOTES	DESCRIPTION	LIMIT 1	UNIT		LIMIT 2	UNIT		EMISSION LIMIT	UNIT	CONDITION
			Turbines (4) (model				Four GE 7FA combined cycle turbines, dry low NOx burners and selective catalytic reduction. These limits are for each of the 4 turbines individually, while operating with the duct burners										
	DUKE ENERGY HANGING		GE 7FA) Duct				off. This permit is a modification to RBLC OH-0252 to remove hourly restrictions on duct							PER ROLLING 12	2		
*OH-0356	ROCK ENERGY	12/18/2012	Burners Off COMBINED	NATURAL GAS	172	2 MW	burners.	Using efficient combustion technology	3.2	lb/hr		44.1	T/YR	MONTHS	-	1	
			CYCLE														
OK-0129	CHOUTEAU POWER PLANT	1/23/2009	COGENERATION >25MW	NATURAL GAS	1887	2 MMBTU/H	SIEMENS V84 3A	GOOD COMBUSTION	0.3	PPMVD @ 15%	3-HR AVG @ 15% O2	5.27	llb/hr	3-HR AVG @ 15% O2	1 .	,	
							SIEMENS V84.3A The Permittee shall select and install any of the turbine options listed below (or newer versions of these turbines if the										
							Department determines that such newer versions achieve equivalent or better emissions rates										
							and exhaust parameters) 1. General Electric 7FA (GE 7FA)										
							2. Siemens SGT6-5000F (Siemens F)										
	HICKORY RUN ENERGY		COMBINED CYCLE UNITS #1				3. Mitsubishi M501G (Mitsubishi G) 4. Siemens SGT6-8000H (Siemens H)			PPMVD @ 15%	WITH OR WITHOUT DUCT		TPY 12-MONTH	INCLUDING STARTUP AND			
*PA-0291	STATION	4/23/2013	and #2	Natural Gas	3.4	4 MMCF/HR	The emissions listed are for the Siemens SGT6-8000H unit.	Oxidation Catalyst	1.5	02	BURNER	93.44	ROLLING	SHUTDOWN			
	BERKS HOLLOW ENERGY		Turbine, Combined								12-MONTH ROLLING						
*PA-0296	ASSOC LLC/ONTELAUNEE CITY PUBLIC SERVICE JK	12/17/2013	Cycle, #1 and #2 SPRUCE POWER	Natural Gas	3046	6 MMBtu/hr	Equipped with SCR and Oxidation Catalyst		93.85	T/YR	TOTAL						
	SPRUCE ELECTRICE		GENERATOR														
TX-0516	GENERATING UNIT 2	12/28/2005	UNIT NO 2				EACH TURBINE/HRSG WILL BE DESIGNED TO OUTPUT 350 MW. TURBINES		29	lb/hr		88	T/YR		-	1	
	PATTILLO BRANCH		ELECTRICITY				BEING CONSIDERED FOR THE PROJECT ARE GE 7FA, GE 7FB, AND SIEMENS SGT6			PPMVD @ 15%	@ 15% O2, 3-HR						
TX-0546	POWER PLANT	6/17/2009	GENERATION	NATURAL GAS	350	0 MW	5000F. The plant will be designed to generate 1,350 nominal megawatts of power. There are two	OXIDATION CATALYST	2	02	ROLLING AVG	-			-	1	+
							configuration scenarios: either four Siemens SGT6-5000F CTGs in combined-cycle mode				THREE-HOUR						
TX-0590	KING POWER STATION	8/5/2010	Turbine	natural gas	1350	0 MW	(Scenario A) or four GE Frame 7FA CTGs in combined cycle mode (Scenario B). Scenario B also includes one or two auxiliary boilers.	DLN burners in combination with an oxidation catalyst	1.8	PPMVD @ 15%	ROLLING AVERAGE				1 .	,	
		2010			1330		(2) GE7FA at 195 MW each, (1) steam purping at 200 MW		1.0			, i					
	THOMAS C. FERGUSON		Natural gas-fired				(1) steam turbine at 200 MW. Each turbine is equipped with an unfired heat recovery steam generator (HRSG), which	Natural gas, good combustion practices		PPMVD @ 15%	3-HR AT 15%						
TX-0600	POWER PLANT	9/1/2011	turbines	natural gas	390	0 MW	provides steam for the steam turbine.	and oxidation catalyst	2	02	OXYGEN	-			1		+
							The three combustion turbine generators (CTG) will be the General Electric 7FA, each with a										
			Combined1-				maximum base-load electric power output of approximately 195 megawatts (MW). The steam turbine is rated at approximately 235 MW. This project also includes the installation of two			PPMVD @ 15%							
TX-0620	ES JOSLIN POWER PLANT	9/12/2012	Combined cycle gas turbine	natural gas	195	5 MW	turbine is rated at approximately 235 MW. This project also includes the installation of two emergency generators, one fire water pump, and auxiliary equipment. No duct burners.	good combustion and natural gas as fuel	2	O2 15%	@15% O2				<u> </u>		
											CORRECTED TO 15% O2						
	FGE TEXAS POWER I AND						Four (4) Alstom GT24 CTGs, each with a HRSG and DBs, max design capacity 409	Oxidation catalyst, good combustion		PPMVD@15%	ROLLING 3 HR						
*TX-0660	FGE TEXAS POWER II	3/24/2014	Alstom Turbine	Natural Gas	230.7	7 MW	MMBtu/hr	practices	2	02	AVE	(1	
	FREEPORT LNG						The exhaust heat from the turbine will be used to heat a heating medium which is used to			PPMVD@15%	1 HOUR BASED						
*TX-0678	PRETREATMENT FACILITY	7/16/2014	Combustion Turbine Natural gas-fired	natural gas	87	7 MW	regenerate rich amine from the acid gas removal system.	oxidation catalyst	2	02	ON STACK TEST	- 0			-	1	-
	SAND HILL ENERGY		combined cycle							PPMVD@15%							
*TX-0709	CENTER	9/13/2013	turbines Combined-cycle gas	Natural Gas	173.5	9 MW			2	02	1HR. AVG.					-	
	COLORADO BEND ENERGY		turbine electric				combined cycle power plant that uses two combustion turbines and one steam turbine, model			PPMVD @ 15%							
*TX-0730	CENTER	4/1/2015	generating facility COMBINED	natural gas	1100	0 MW	GE 7HA.02	SCR and oxidation catalyst	4	02	3-HR AVERAGE 3 HR AVG.	-		3 HR. AVG.	<u> </u>	1	+
			CYCLE TURBINE								(WITHOUT			(WITH DUCT			
VA-0315	WARREN COUNTY POWER PLANT - DOMINION	12/17/2010	& DUCT BURNER, 3	Natural Gas	2996	6 MMBTU/H	Emissions are for one of three units (Mitsubishi natural gas-fired combustion turbine (CT) generator, Model M501 GAC).	Oxidation catalyst and good combustion practices.	2.6	lb/hr	DUCT BURNER FIRING)	6.1	lb/hr	BURNER FIRING)		,	
	BRUNSWICK COUNTY		COMBUSTION TURBINE							PPMVD@15%	3 H AVG/WITHOUT						
*VA-0321	POWER STATION	3/12/2013		Natural Gas	3442	2 MMBTU/H	Three (3) Mitsubishi M501 GAC combustion turbine generators with HRSG duct burners (natural gas-fired).	Oxidation catalyst; good combustion practices.	0.7	O2 15%	DUCT BURNING					,	
*WY-0070	CHEYENNE PRAIRIE GENERATING STATION		Combined Cycle Turbine (EP01)	Natural Gas		0 MW		Oxidation Catalyst		PPMVD @ 15% O2	1-HOUR			3-HOUR AVERAGE		T/YR	
	CHEYENNE PRAIRIE		Combined Cycle						,	PPMVD @ 15%	3-HOUR	<u> </u>	IO/III	3-HOUR			
*WY-0070	GENERATING STATION	8/28/2012	Turbine (EP02)	Natural Gas	40	0 MW		Oxidation Catalyst	3	O2	AVERAGE 1-hr average; Duct	3	lb/hr	AVERAGE 1-hr average; Duct	14.	T/YR	
	Astoria Energy LLC		Combustion Turbine	Natural Gas	1000	0 MW		Low NOx Burners	0.003	lb/MMBtu	Burners Off	5.43	lb/hr	Burners Off			
	Footprint Power Salem Harbor Development LP		Combustion Turbine	Natural Gas	344	6 MW		Low NOx Burners	,	llb/br	1-hr average; Duct Burners Off	0.0013	lb/MMRtu	1-hr average; Duct Burners Off			
	Footprint Power Salem Harbor								1	PPMVD @ 15%	1-hr average; Duct			1-hr average; Duct			
	Development LP		Combustion Turbine	Natural Gas	346	6 MW		Low NOx Burners	 	O2 PPMVD @ 15%	Burners Off 1-hr average; Duct	0.009	lb/MW-hr	Burners Off			+
	Cricket Valley Energy Center		Combustion Turbine	Natural Gas	1000	0 MW		Oxidation Catalyst	1	02	Burners Off						
	Hawkeye Generating, LLC		Combustion Turbine	Natural Gas						lb/MMBtu	1-hr average; Duct Burners Off						
	Huntington Beach Energy Project		Combustion Turbine	Natural Gas	020	9 MW				PPMVD @ 15%	1-hr average; Duct						
	Project		Combustion Turbine	ivatural Gas	939	9 N1W			†	102	Burners Off Avg of 3 stack test						+
	Hace Nameric Economic Cont		Combustion Turbine	Natural Gas					l .	PPMVD @ 15%	runs; Duct Burners						
	Hess Newark Energy Center					1			†	PPMVD @ 15%	Oil						
	Kalama Energy Center		Combustion Turbine	Natural Gas	2247	7 MMBtu/hr		Oxidation Catalyst	1	02	1-hr average	3.2	lb/hr	1-hr average			+
	Kalama Energy Center		Combustion Turbine	Natural Gas	2247	7 MMBtu/hr		Oxidation Catalyst	47.8	tpy	12-mo rolling						
	Lawrence Energy Center LLC		Combustion Turbine	Natural Gas		0 MW			0.00221	lb/MMBtu		4.2	lb/hr				
	Lawrence Energy Center LLC		Combustion Turbine	Natural Gas		0 MW				lb/MMBtu		4.2	lb/hr				+
	GenConn Middletown LLC		Combustion Turbine	Natural Gas	474.9	9 MMBtu/hr	Town Minuteshi 2022 MMD and combined and		1.11	lb/hr							
							Two Mitsubishi 2932 MMBtu/H combined cycle combustion turbines, both with 300 MMBtu/H duct burners, with dry low NOx combustors, SCR, and catalytic oxidizer. Will										
			20-1-10:				install either 2 Siemens or 2Mitsubishi, not both (not determined).										
			2 Combined Cycle Combustion				Short term limits are different with and without duct burners.										
	OREGON CLEAN ENERGY		Turbines-Siemens,			MMSCF/rolling 12-		9.2		DD1.4	PPMVD AT 15%						
	CENTER		without duct burners	Natural Gas	515600		This process without duct burners.	oxidation catalyst	 	PPMVD @ 15%	102	<u> </u>		 		1	+
	PacifiCorp Energy		Block 2 CT	Natural Gas	629	9 MW			2.8	O2 PPMVD @ 15%	3-hour	14.1	lb/hr				+
	Sevier Power Company Power Plant		Combustion Turbine	Natural Gas	580	0 MW			3	02	3-hr average						
	CPV Valley Energy Center			Natural Gas		0 MW			0.7	PPMVD @ 15%	1-hr average					1	
	Wawayanda, NY Woodbridge Energy Center								V./	PPMVD @ 15%	1-m average						\vdash
	(CPV Shore, LLC)			Natural Gas	2,307	7 MMBtu/hr			1	02							

		PERMIT ISSUANCE						CONTROL METHOD	EMISSION		AVG TIME	EMISSION		AVG TIME	STANDARAD	AVG TIME
RBLCID			PROCESS NAME	PRIMARY FUEL	THROUGHPUT	THROUGHPUT UNIT	PROCESS NOTES								EMISSION LIMIT	CONDITION
																T
			COMBINED HEAT													
			AND POWER													
			DUAL-FIRED													
	PA STATE UNIV/UNIV		COMBUSTION							PPMVD @ 15%						
	PARK CAMPUS		TURBINE	Natural Gas	86.2	9 MMBtu/hr			10.8							
	l			l						PPMVD @ 15%			l			
-	Hummel Station LLC	-	Combustion Turbine	Natural Gas	2,254.0	00 MMBtu/hr			- 1	O2 PPMVD @ 15%		3	lb/hr			+
	Tenaska Partners LLC		Combustion Turbine	Natural Gas	214	7 MMBtu/hr			1.4	O2						
	UGI Development Co/ Hunlock		Comoustion rutoine	ivaturai Gas	314	/ MINIDON			1.99	PPMVD @ 15%						+
	Creek			Natural Gas	471.	.2 MMBtu/hr			1.2	02	>32 °F					
	UGI Development Co/ Hunlock									PPMVD @ 15%						
	Creek			Natural Gas	471.	.2 MMBtu/hr			4	02	<32 °F					
	Hawkeye Generating, LLC			Natural Gas	61	5 MW				lb/MMBtu		54.16	tpy			
	Huntington Beach Energy									PPMVD @ 15%						
	Project			Natural Gas	93	9 MW (net)			1		1-hr rolling					
			Combustion Turbine		222	0 MMBtu/hr				PPMVD @ 15% O2			lb/MMBtu			
-	Hess Newark Energy Center		Combustion Turbine	Natural Gas	232	0 MMBtwhr			- 1		3-hour block	0.001	Ib/MMBtu			
										PPMVD @ 15%						
	York Energy Center Block 2	6/15/2015			2512	.5 MMBtu/hr	firing NG without duct burner		1.5		3 test runs	1				
	Calpine/Bethlehem Energy	0/13/2013			2312.		ining 100 which due build		1.5	PPMVD @ 15%	J test ruib					
	Center				12	2 MW			1.2	02						
										PPMVD @ 15%						
	Liberty Electric Power, LLC				195	4 MMBtu/hr	Without DB		1.4	O2						

		IPERMIT ISSUANCE		IDDIMADV			invenergy, EEG - Allegheny County Energ	ICONTROL METHOD	TEMISSION		AVCTIME	TEMISSION		IAVCTIME	ISTANDADAD		IAVC TIME
RBLCID	FACILITY NAME	DATE DATE	PROCESS NAME	FUEL	THROUGHPUT	THROUGHPUT UNIT	PROCESS NOTES	DESCRIPTION	LIMIT 1	UNIT	CONDITION	LIMIT 2	UNIT	CONDITION	EMISSION LIMIT	UNIT	CONDITION
							There are 2 combined cycle natural gas-fired combustion turbine generators (CTGs) with heat recovery steam generators (HRSG) identified as EUCTGHRSGI & EUCTGHRSG2 in the flexible groups FCCGHRSG. The total hours for startup and shutdown for each train shall not exceed 500 hours per 12-month rolling time period.				TEST						
MI-0423	INDECK NILES, LLC	1/4/2013	FGCTGHRSG (2 Combined Cycle	Notes I	922	MMBTU/H	The throughput capacity is 3421 MMBTU/H for each turbine, and 740 MMBTU/H for each duct burner for a combined throughput of 4161 MMBTU/H or 8322 MMBTU/H for both	Good combustion practices, inlet air conditioning, and the use of pipeline quality natural gas.		9 9 I B/H	PROTOCOL WILL SPECIFY AVG TIME						
MIP0423	INDECK NILES, LLC	13472017	CTGs with HRSGs) FGCTGHRSG (2	Ivaturai gas	632.	MINIBICIT	uans.	quanty natural gas.		3.3 LD/11	AVGTIME		-				1
MI-0424	HOLLAND BOARD OF PUBLIC WORKS - EAST 5TH STREET		Combined cycle CTGs with HRSGs; EUCTGHRSG10 & amp; EUCTGHRSG11)	Natural gas	55-	MMBTU/H, each	Two combined cycle natural gas fired combustion turbine generators (CTGs) with heat recovery steam generators (HRSG) (EUCTGHRSG10 & EUCTGHRSG11 in FGCTGHRSG). The total hours for both units combined for startup and shutdown shall not exceed 635 hours per 12-month fulling time period.	Good combustion practices and the use of pipeline quality natural gas.	f 0.	007 LB/MMBTU	TEST PROTOCOL WILL SPECIFY AVG TIME		0			D	
*MI-0433	MEC NORTH, LLC AND MEC SOUTH LLC	6/29/2018	EUCTGHRSG (South Plant): A combined cycle natural gas-fired combustion turbine generator with heat recovery steam generator.	Natural gas	50) MW	A combined-cycle natural gas-fired combustion turbine generator (CTG) with heat recovery steam generator (HRSG) in a 1x1 configuration with a steam turbine generator (STG) for a nominal 500 MW electricity production. The CTG is a 1x1 class turbine with a rating of 3,080 MMBTUH(HHY). The HRSG is equipped with a natural gas-fired duct burner rated at 75 MMBTUH(HHY) at SC conditions to provide heat for additional steam production. The HRSG is not capable of operating independently from the CTG. The CTG/HRSG is equipped with dry low NOX burner (DLMS), SCR, and an oxidation catalyst.	Good combustion practices, inlet air conditioning, and the use of pipeline quality natural gas.		5.8 LB/H	HOURLY		0			0	
			EUCTGHRSG (North Plant): A combined-cycle natural gas-fired combustion turbine generator with heat				Nominal 500 MW electricity production. Turbine rating of 3,080 MMBTU/hr (HHV) and HBRSG dust burner rating of 755 MMBTU/hr (HHV). A combined-spice anomal par-fired combination turbine generator (CTG) with heat econvery stems generator (HBRSG) is a 1st configuration with a stem turbine generator (STG) for a seminal 500 MW electricity production. The CTG is a 1st Lists turbine with a rating of 3,080 MMBTU/hr (HHV). The HBRSG is equipped with a natural gas-fired duct burner ratio at 750 MMBTU/hr (HHV) at 18C conditions or provide bact for additional stems production. The	Good combustion practices, inlet air									
	MEC NORTH, LLC AND		recovery steam				HRSG is not capable of operating independently from the CTG. The CTG/HRSG is equipped	conditioning, and the use of pipeline									
*MI-0433	MEC SOUTH LLC	6/29/2018	generator.	Natural gas	500	MW	with dry low NOx burner (DLNB), SCR, and an oxidation catalyst. Two (2) combined-cycle natural gas-fired combustion turbine generators, each with a heat recovery steam generator (CTGHRSG).	quality natural gas.		5.8 LB/H	HOURLY		0			0	
*MI-0435	BELLE RIVER COMBINED CYCLE POWER PLANT	7/16/2018	FGCTGHRSG (EUCTGHRSG1 & amp; B EUCTGHRSG2)	Natural gas)	Plant nominal 1,150 MW electricity production. Turbines are each rated at 3,658 MMBTU/H and HRSG duct burners are each rated at 800 MMBTU/H. The HRSGs are not capable of operating independently from the CTGs.	Good combustion practices, inlet air conditioning, and the use of pipeline quality natural gas.		16 LB/H	HOURLY; EACH UNIT	15	2.2 LB/H	HOURLY; EACH UNIT W/O DUC BURNER FIRIN	г	0	
	TENASKA PA PARTNERS/WESTMORELA		Large combustion					Good combustion practices with the use									
*PA-0306	ND GEN FAC	2/12/2016	turbine	Natural Gas	-		This process entry is for operations with the duct burner. Limits entered are for each turbine. Emission limits are for each turbine operating with duct burner and do not include	of low ash/sulfer fuels	0.0	039 LB/MMBTU		11	.8 LB/HR		1	0	
	CPV FAIRVIEW ENERGY		Combustion turbine and HRSG with due				startips/butdown emissions. Tons per year limits is a cumulative value for all three CCCT. CEMS for NO., CO, and O2. Each CCCT and dust burner have 5 operational senarios: 1 CCCT with duet burner fired - fueled by NG only 2 CCCT with duet burner fired - fueled by NG blend with ethane 3 CCCT without duet burner fired - fired by NG volly 4 CCCT without the burner fired - fired by NG blend with ethane	Low sulfur fuel, good combustion						12-MONTH			
*PA-0310	CENTER	9/2/2016	burner NG only	Natural Gas	333	MMBtu/hr	5 CCCT without duct burner fired - fueled by ULSD (Limited to emergency use only)	practicies	0.	005 LB/MMBTU		131	.5 TONS	ROLLING BASI	-	0	+
TN-0162	JOHNSONVILLE COGENERATION	4/19/2016	Natural Gas-Fired Combustion Turbine with HRSG	Natural Gas	133	MMBtu/hr	Turbine throughput is 1019.7 MMBtu/hr when burning natural gas and 1083.7 MMBtu/hr when burning No. 2 oil. Duct burner throughput is 319.3 MMBtu/hr. Duct burner firing will occur during natural gas combustion only.	Good combustion design and practices	0.0	005 LB/MMBTU		0.0	15 LB/MMBTU			0	
	GAINES COUNTY POWER		Combined Cycle Turbine with Heat Recovery Steam Generator, fired Duct Burners, and Steam Turbine	NATURAL			Four Siemens SGT6-5000F5 natural gas fired combustion turbines with HRSGs and Steam	Pipeline quality natural gas; good									
TX-0819	PLANT	4/28/2017	Generator	GAS	420	MW	Turbine Generators Nominal 640 mWe	combustion practices		0			0		+	0	+
*WV-0029	HARRISON COUNTY POWER PLANT	3/27/2018	GE 7HA.02 Turbine	Natural Gas	3496.	2 mmBtu/hr	All emission limits steady-state and include 1000 mmBtu'hr Duct Burner in operation Short Term startup and shutdown limits in lb/event given in permit.	Air Filter, Use of Natural Gas, Good Combustion Practices	1	8.2 LB/HR		100	0.1 TONS/YEAR		18.	2 LB/HR	
47. 0107	MARSHALLTOWN GENERATING STATION	47,400,4	Combustion turbine		225					0.01 LB/MMBTU	AVERAGE OF 3 ONE-HOUR TEST	7	I TOMATA	12-MONTH ROLLING TOTAL			
*IA-0107	ST. JOSEPH ENEGRY CENTER, LLC		#2 -combined cycle FOUR (4) NATURAL GAS COMBINED CYCLE COMBUSTION TURBINES	natural gas NATURAL GAS		8 mmBtw/hr	EACH TUBBNE IS EQUIPED WITH DRY LOW NOX BURNERS, NATURAL GAS FIRED DUCT BURNERS, AND A HEAT RECOVERY STEAM GENERATOR IDENTIFIED AS HIRSGIN. NOX EMISSIONS CONTROLLED BY SELECTIVE CATALYTIC REDUCTION SYSTEMS (SCR##) ALONG WITH CO AND VOC EMISSIONS CONTROLLED BY OLDIATION CATALYTIC SYSTEMS (CAT##) IN EACH TUBBNE. EACH STACK HAS CONTROLOS EMISSIONS MONITORS FOR NOX AND CO. COMBINED NOMAILED POWER OUTPUT: 13:150 MW.	GOOD CUMBUSTION PRACTICE AND FUEL SPECIFICATION		18 lb/hr	3 HOURS	,,	78 LB/MMBTU	3 HOURS		0	
		.23/2012	FOUR (4) NATURAL GAS COMBINED CYCLE		230		NOX AND CO. COMBINED NOMIAL POWER OUTPUT IS 1350 MW. EACH TURBEN ES (DUPED WITH DRY LOW NOX BURNERS, NATURAL GAS FIRED DUCT BURNERS, AND A HEAT RECOVERY STEAM GENERATOR DENTIFIED AS HISGS. MOX EMISSIONS CONTROLLED BY SELECTIVE CATALYTIC REDUCTION SYSTEMS (SCRE#) ALONG WITH CO AND VOC EMISSIONS CONTROLLED BY OMDATION CATALYTIC SYSTEMS (CAT##) IN					5.00					
*IN-0158	ST. JOSEPH ENEGRY CENTER, LLC	12/3/2012	COMBUSTION TURBINES 2 COMBINED- CYCLE	NATURAL GAS	2300	MMBTU/H	EACH TURBINE. EACH STACK HAS CONTINUOUS EMISSIONS MONITORS FOR NOX AND CO. COMBINED NOMIAL POWER OUTPUT IS 1.350 MW. TWO GENERAL ELECTRIC (GE) F-CLASS ADVANCED COMBINED CYCLE COMBUSTION TURBINES (CTS) WITH A NOMINAL GENERATING CAPACITY OF 275 MW. COLIU ED WITH A HEAT RECOVERY STEAM GENERATOR (HRSG)	GOOD CUMBUSTION PRACTICE AND FUEL SPECIFICATION		18 lb/hr	3 HOURS	0.00	78 LB/MMBTU	3 HOURS		0	+
*MD-0041	CPV ST. CHARLES	4/23/2014	CYCLE COMBUSTION TURBINES	NATURAL GAS	72:	MEGAWATT	725 MW, COUPLED WITH A HEAT RECOVERY STEAM GENERATOR (HRSG) EQUIPPED WITH DUCT BURNERS, DRY LOW-NOX BURNERS, SCR, OXIDATION CATALYST	NATURAL GAS EXCLUSIVELY AND GOOD COMBUSTION PRACTICE	0.0	007 LB/MMBTU	3-HOUR BLOCK AVERAGE		0			0	
*MD-0042	WILDCAT POINT GENERATION FACILITY		2 COMBINED CYCLE COMBUSTION TURBINES, WITH DUCT FIRING	NATURAL GAS) MW	TWO MITSURISH & Isopao: Ælsapao: Ælsapao: MODEL COMBUSTION TURRINE GENERATORS. (CT) WITH A NOMINAL GENERATING CAPACITY OF 270 MW CAPACITY EACH, COUPLED WITH A HEAT RECOVERY STEAM GENERATOR (HRSG) EQUIPPED WITH DUCT BURNERS, DRY LOW-NOX COMBUSTORS, SELECTIVE CATALYTIC REDUCTION (SCR.) OXIDATION CATALYST Throughput is 257 WIMBTUH for each CTO	EXCLUSIVE USE OF PIPELINE QUALITY NATURAL GAS AND EFFICIENT TURBINE DESIGN	2	22.8 lb/hr	3-HOUR BLOCK AVERAGE		0			D	
*MI-0405	MIDLAND COGENERATION VENTURE	4/23/2013	Natural gas fueled combined cycle combustion turbine generators (CTG) with HRSG	Natural gas	223'	7 MMBTU/H	Equipment is permitted as following flexible group (FG): FG-CTG1-2: Two natural gas fred CTGs with each turbine containing a heat recovery steam generator (HRSG) to operate in combined cycle. The two CTGs (with HRSG) are connected to one steam turbine generator. Each CTG is equipped with a dry low NOx (DLN) burner and a selective easibite (reaction ISCR) system.	Good combustion practices	0.0	006 LB/MMBTU	EACH CTG; TEST PROTOCOL		0			D	

RBLCID	FACILITY NAME	PERMIT ISSUANCE DATE	PROCESS NAME	PRIMARY FUEL	THROUGHPUT	THROUGHPUT UNIT	PROCESS NOTES	CONTROL METHOD DESCRIPTION	EMISSION LIMIT 1	UNIT	AVG TIME CONDITION	EMISSION LIMIT 2	UNIT	AVG TIME CONDITION	STANDARAD EMISSION LIMIT	UNIT	AVG TIME CONDITION
WECTD.	PACAGITT NAME	I I	I KOCESS MAME	LVEL		, Ocom er UNII		Discountification and the second	Lacilli I	vall	COMPTION	L.MIT Z	IV-MII	SOMPTION	L. HISSION LIMIT	No. III	CONDITION
							This process is permitted in a flexible group format, identified in the permit as FG-CTG/DB1-2 and is for two natural gas fired CTGs with each turbine containing a heat recovery steam										
			Natural gas fueled				[generator (HRSG) to operate in combined cycle. The two CTGs (with HRSG) are connected										
			combined cycle				to one steam turbine generator. Each CTG is equipped with a dry low NOx (DLN) burner and										
			combustion turbine				a selective catalytic reduction (SCR) system. Additionally, the HRSG is operating with a										
	MIDLAND COGENERATION		generators (CTG) with HRSG and duct				natural gas fired duct burner for supplemental firing.				TEST						
*MI-0405	VENTURE	4/23/201	burner (DB)	Natural gas	2486	MMBTU/H	The throughput is 2,486 MMBTU/H for each CTG/DB. Natural gas fired CTG with DB for HRSG: 4 total.	Good combustion practices	0.004	LB/MMBTU	PROTOCOL		0			0	
							Natural gas fired CTG with DB for HRSG; 4 total.										
							Technology A (4 total) is 2587 MMBTU/H design heat input each CTG.										
							reclinology A (4 total) is 2567 MMB FO/11 design near input each C FG.										
							Technology B (4 total) is 2688 MMBTU/H design heat input each CTG.										
							L										
							Permit was issued for either of two F Class turbine technologies with slight variations in emission rates. Applicant will select one technology. Installation is two separate CTG/HRSG				TEST						
			FGCCA or FGCCB-	1			trains driving one steam turbine electrical generator; Two 2X1 Blocks. Each CTG will be	Combustion air filters; efficient			PROTOCOL; (3 1						
	THETFORD GENERATING		4 nat. gas fired CTG			MMBTU/H heat input,	rated at 211 to 230 MW (gross) output and the station nominal generating capacity will be up	combustion control; low sulfur natural gas			H TESTS IF						
*MI-0410	STATION	7/25/201	w/ DB for HRSG	natural gas	2587	each CTG	to 1,400 MW. This process is identified in the permit as FGCTGHRSG; it is 2 combined cycle natural gas-	fuel.	0.0033	LB/MMBTU	POSSIBLE)		0			0	-
							This process is identified in the permit as FGCTGHRSG; it is 2 combined cycle natural gas- fired combustion turbine generators (CTGs) with Heat Recovery Steam Generators (HRSGs)										
			FG-CTGHRSG: 2				equipped with duct burners for supplemental firing (EUCTGHRSG1 & EUCTGHRSG2 in										
	HOLLAND BOARD OF		Combined cycle				FGCTGHRSG). The total hours for both units combined for startup and shutdown shall not										
*MI-0412	PUBLIC WORKS - EAST 5TE STREET	12/4/201	CTGs with HRSGs		642	MMBTU/H for each CTGHRSG	exceed 635 hours per 12-month rolling time period. Each CTGHRSG shall not exceed 647	Good combustion practices and the use of	0.007	LB/MMBTU	TEST PROTOCOL		0				
*MI-0412	SIREEI	12/4/201	With duct burners COMBINED	natural gas	647	CIGHRSG	MMBtu/hr on a fuel heat input basis.	pipeline quality natural gas.	0.007	LB/MMB1U	PROTOCOL		0			U	
			CYCLE				Natural Gas Usage <= 33,691 MMft^3/yr										
			COMBUSTION				per 365 consecutive day period, rolling one										
	PSEG FOSSIL LLC SEWAREN GENERATING		TURBINE WITH DUCT BURNER -			MMCUBIC FT PER	day basis (per two Siemens turbines and two associated duct burners) The heat input rate of the Siemens turbine will be 2,356 MMBtu/hr(HHV) with a 62.1 duct				AVERAGE OF THREE ONE	1	1		1	1	1
*NJ-0081	STATION	3/7/201	SIEMENS	Natural Gas	33691	YEAR	burner MMRtu/br(HHV)	Use of natural gas a clean burning fuel	10.6	lb/hr	HOUR TESTS		0			0	
		0.77407			2307		This is a 427 MW Siemens Combined Cycle Turbine with duct burner		.0.0			1	1			1	
							Heat Input rate of the turbine = 2276 MMbtu/hr (HHV)							l			
	WEST DEPTFORD ENERGY		Combined Cycle Combustion Turbine			1	Heat Input rate of the Duct burner= 777 MMbtu/hr(HHV)				AVERAGE OF THREE STACK	1	1	AVERAGE OF THREE STACK	1	1	1
*NJ-0082	STATION	7/18/201-	with Duct Burner	Natural Gas	20282	MMCF/YR	The fuel use of 20,282 MMCF/YR is for three turbines and three Duct burners.	Use of Natural gas a clean burning fuel	15.1	lb/hr	TEST RUNS	0.004	8 LB/MMBTU	TEST RUNS		o	
	MOXIE ENERGY		Combined Cycle														
	LLC/PATRIOT		Power Blocks 472				Two natural-gas-fired combined cycle powerblocks where each powerblock consists of a						.				
*PA-0286	GENERATION PLT	1/31/201	3 MW - (2)	Natural Gas	(1	combustion turbine and heat recovery steam generator with duct burner.		0.0057	LB/MMBTU			4 T/YR	EACH UNIT		0	_
			Combined Cycle														
			Combustion Turbine				Three powerblocks consisting of three (3) natural gas fired F class combustion turbines coupled										
	SUNBURY GENERATION		AND DUCT				with three (3) heat recovery steam generators (HSRGs) equipped										
*PA-0288	LP/SUNBURY SES	4/1/201	BURNER (3)	Natural Gas	2538000	MMBTU/H	with natural gas fired duct burners. The Permittee shall select and install any of the turbine options listed below (or newer versions		0.0088	LB/MMBTU			0	_	-	1	+
							of these turbines if the										
							Department determines that such newer versions achieve equivalent or better emissions rates										
							and exhaust parameters) 1. General Electric 7FA (GE 7FA)										
							2. Siemens SGT6-5000F (Siemens F)										
			COMBINED				Mitsubishi M501G (Mitsubishi G)										INCLUDING
	HICKORY RUN ENERGY		CYCLE UNITS #1				4. Siemens SGT6-8000H (Siemens H)			lb/hr W/ DUCT			11.0 lb/hr			T/YR 12-MONTH	
*PA-0291	STATION	4/23/201	3 and #2	Natural Gas	3.4	MMCF/HR	The emissions listed are for the Siemens SGT6-8000H unit.		18.5	BURNER	12-MONTH		1 WITHOUT		62.8	ROLLIN	SHUTDOWN
	BERKS HOLLOW ENERGY		Turbine, Combined								ROLLING						
*PA-0296	ASSOC LLC/ONTELAUNEE	12/17/201	Cycle, #1 and #2	Natural Gas	3046	MMBtu/hr	Equipped with SCR and Oxidation Catalyst		48.56	TPY	TOTAL	21.5	5 lb/hr			D	
			Turbine, COMBINED											BASED ON A 12 MONTH			
	FUTURE POWER PA/GOOD		CYCLE UNIT								WITH DUCT			ROLLING			
*PA-0298	SPRINGS NGCC FACILITY	3/4/201	(Siemens 5000)	Natural Gas	2267	MMBtu/hr			10.4	lb/hr	BURNER	38.9	5 T/YR	TOTAL		o	
							Four GE 7FA combined cycle turbines, dry low NOx burners and selective catalytic reduction.										
	COLORADO BEND ENERGY		Combined-cycle gas				These limits are for each of the 4 turbines individually, while operating with the duct burners on. This permit is a modification to RBLC OH-0252 to remove hourly restrictions on duct										
*TX-0730	COLORADO BEND ENERGY CENTER	4/1/201	turbine electric generating facility	natural gas	1100	MW	on. This permit is a modification to RBLC OH-0252 to remove hourly restrictions on duct burners.	efficient combustion, natural gas fuel	42	lls/he			0				
	CHEYENNE PRAIRIE		Combined Cycle		1100	IVIV	ouners.	emelen combustion, natural gas ruer	43	IOIE	3-HOUR		0	CALENDAR			
*WY-0070	GENERATING STATION	8/28/201	Turbine (EP01)	Natural Gas	40	MW		good combustion practices	4	lb/hr	AVERAGE	17	5 TONS	YEAR		0	
AK-0071	INTERNATIONAL STATION	12/20/201	GE LM6000PF-25	Natural Gas	50000	hp ISO	man and a second second	Good Combustion Practices	0.0000	LB/MMBTU	3-HOUR AVERAGE						
AK-00/1	POWER PLANT	12/20/201	Turbines (4)	ivatural Gas	59900	1 mp 150	Turbine-duct burner pairs exhaust through common stack		0.0066	LD/MMB1U	AVERAGE	l	4	1	1	"	1
								Combustion Turbines EU IDs 5-8 use			1		1				
								good combustion practices involve			1		1			1	
						1		increasing the residence time and excess oxygen to ensure complete combustion			1	1	1		1	1	1
	INTERNATIONAL STATION						EU IDs 5-8 Combined Cycle Natural Gas-fired Combustion Turbines rated at 59,900 hp (44.7	oxygen to ensure complete combustion which in turn minimize particulates			1		1			1	
AK-0073	POWER PLANT	12/20/201	Fuel Combustion	Natural Gas	59900	HP	MW)	without an add-on control technology.	0.0066	LB/MMBTU	3-HOUR		0			0	
								USE PUBLIC UTILITY COMMISSION QUALITY NATURAL GAS W/			1		1				
	BLYTHE ENERGY PROJECT	[2 COMBUSTION	NATURAL		1		SULFUR CONTENT LESS THAN OR			1	1	1		1	1	1
CA-1144	II	4/25/200	TURBINES	GAS	170	MW	EACH TURBINE WILL PRODUCE 170 MW	EQUAL TO 0.5 GRAINS PER 100 SCF	6	lb/hr	1		1 T/YR		1	0	
			COMBUSTION					-				1					
			TURBINE #2 (NORMAL								12-MONTH		1				
			OPERATION.			1					ROLLING AVG	1	1		1	1	1
	VICTORVILLE 2 HYBRID		WITH DUCT	NATURAL		1					(W/DUCT	1	1		1	1	1
CA-1191	POWER PROJECT	3/11/201	BURNING)	GAS	154	MW	154 MW Combined Cycle Combustion Turbine Generator	PUC QUALITY NATURAL GAS	18	lb/hr	BURNING)		0			0	
			COMBUSTION TURBINE #1								1		1				
			(NORMAL			1					1	1	1		1	1	1
			OPERATION,								1		1				
			WITH DUCT	NATURAL							12-MONTH		1				
CA-1192	AVENAL ENERGY PROJECT	T 6/21/201	BURNING)	GAS	180	MW		USE PUC QUALITY NATURAL GAS	11.78	lb/hr	ROLLING AVG	1	0		-	0	+
						1		USE PIPELINE QUALITY NATURAL			1	1	1		1	1	1
			COMBUSTION					GAS, OPERATE DUCT BURNERS NO			6-HR ROLLING			6-HR ROLLING		1	
	MORRO BAY POWER		TURBINE	NATURAL				MORE THAN 4000 HRS PER YEAR			AVG (NO DUCT		1	AVG (W/ DUCT			
		9/25/200	GENERATOR	GAS	180	MW		(12-MONTH ROLLING AVG BASIS)	11	lb/hr	BURNING)	13	3 lb/hr	BURNING)		0	
CA-1198	PLANT																1
CA-1198	PLANT	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	COMBUSTION														
CA-1198	PLANT COLUSA GENERATING	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	COMBUSTION TURBINES (NORMAL	NATURAL			TWO (2) NATURAL GAS FIRED TURBINES AT 172 MW EACH. BOTH TURBINES										

		IPERMIT ISSUANCE		IPRIMARY	1		invenergy, EEG - Allegheny County Energ	CONTROL METHOD	TEMISSION	IAVG TIME	TEMISSION		IAVG TIME	ISTANDARAD		TAVC TIME
RBLCID	FACILITY NAME	DATE	PROCESS NAME	FUEL	THROUGHPUT	THROUGHPUT UNIT		DESCRIPTION	LIMIT 1 UNIT	CONDITION	LIMIT 2	UNIT	CONDITION	EMISSION LIMIT	UNIT	CONDITION
CA-1212	PALMDALE HYBRID POWER PROJECT	10/18/2011	COMBUSTION TURBINES (NORMAL OPERATION)	NATURAL GAS	15	4 MW	TWO NATURAL GAS-FRED COMBUSTION TURBING-GENERATORS (CTGS) RATED AT 154 MEGAWATT (MW. (ROSS) EACH, TWO HEAT RECOVERY STEAM GENERATORS (HRSG), ONE STEAM TURBING GENERATOR (STG) RATED AT 267 MW., AND 251 ACRES OF PARABOLIC SOLAR-THERMAL COLLECTORS WITH ASSOCIATED HEAT-TRANSFER EQUIPMENT	USE PUC QUALITY NATURAL GAS	0.0048 LB/MMBTU	9-HR AVG (NO DUCT BURNING	0.0049	LB/MMBTU	9-HR AVG (W/ DUCT BURNING) 0		
CO-0056	ROCKY MOUNTAIN ENERGY CENTER, LLC	5/2/2006	NATURAL-GAS FIRED, COMBINED- CYCLE TURBINE	NATURAL GAS	30	0 MW	ONE NEW COMBINED-CYCLE TURBINE IS BEING ADDED TO AN EXISTING FACILITY.	NATURAL GAS QUALITY FUEL ONLY AND GOOD COMBUSTION CONTROL PRACTICES.	0.0074 LB/MMBTU		10	% OPACITY		0		
			SIEMENS SGT6- 5000F COMBUSTION TURBINE #1 AND #2 (NATURAL				THROUGHPUT IS FOR TURBINE ONLY WHEN FIRING NATURAL GAS TURBINE: 2136 MMBTU/HR (2.095 MMCF/HR)									
CT-0151	KLEEN ENERGY SYSTEMS,	2.05.2008	GAS FIRED) WITH 445 MMBTU/HR NATURAL GAS DUCT BURNER	NATURAL	2	1 MMCF/H	DUCT BURNER: 445 MMBTU/HR (0.436 MMCF/HR) EMISSION RATES ARE FOR EACH COMBUSTION TURBINE FIRING NATURAL GAS, NOT COMBINED.		11 lb/br	W/OUT DUCT BURNER	15.2	Uhilbe	W/ DUCT BURNER			
	GARRISON ENERGY			U/LD			NOT COMPAND.	Fuel Usage Restriction to natural gas and	11 1012	12 MONTH ROLLING	13.2	10.11	DOMINA	V		
DE-0024	CENTER	1/30/2013	170 MW	Natural Gas	226	0 million BTUs	GENERATING CAPACITY: EACH OF THE FOUR GAS TURBINES HAS A NOMINAL GENERATING CAPACITY OF 170 MW FOR GAS FIRING (180 MW FOR OIL FIRING). EACH OF THE FOUR HEAT RECOVERY STEAM GENERATORS, (HRSGS) PROVIDES STEAM TO THE SINGLE STEAM THRISHE ELECTRICAL GENERATOR, WHICH HAS A NOMINAL CAPACITY OF 470 MW. THE TOTAL NOMINAL GENERATING CAPACITY OF 470 MW. THE TOTAL NOMINAL GENERATING CAPACITY OF HE 40-N1 COMBINED CYCLE UNIT IS 110 MW. FUELS: EACH GAS TURBINE WILL FIRE NATURAL GAS AS THE PRIMARY FUEL AND ULTRA LOW SULFUR (0.0015% SULFUR) DISTILLATE OIL AS A RESTRICTED ALTERNATE FUEL EMISSISON OF ALL POLLUTANTS NCREASE WITH THE FIRING OF OIL. THE APPLICANT REQUESTS 500 HOURS PER YEAR PER GAS TURBING COUNTAINS.	low sulfur distillate oil PM/PM10 WILL BE MINIMIZED BY	120.4 TONS/Y	AVERAGE	0			0		
	FPL TURKEY POINT		COMBUSTION TURBINE, 4	NATURAL			MODES OF OPERATION: STANDARD NORMAL OPERATION, WITH DUCT	THE EFFICIENT COMBUSTION OF NATURAL GAS AND DISTILLATE								
	POWER PLANT	2/8/2005	COMBINED	NATURAL NATURAL		0 MW	BURNER, POWER AUGMENTATION AND PEAKING.	OIL AT HIGH TEMPERATURES.	0	6 MIM BLOCK	0			0		
FL-0265	HINES POWER BLOCK 4	6/8/2005	COMBUSTION	GAS	53	0 MW		CLEAN FUELS	10 % OPACITY	AVERAGE	0			10	% OPACITY	+
ID-0018	LANGLEY GULCH POWER PLANT	6/25/2010	BURNER	NATURAL GAS (ONLY)	2375.2	8 MMBTU/H	SIEMENS SGT6-5000F COMBUSTION TURBINE (NGCT, CCGT) FOR ELECTRICAL GENERATION, NOMINAL 269 MW AND 2.1466 MMSCF/HR	GOOD COMBUSTION PRACTICES (GCP)	0	SEE NOTE	0			0		
	PLAQUEMINE		(4) GAS TURBINES/DUCT	NATURAL			VISUAL INSPECTION FOR OPACITY ON A WEEKLY BASIS, STACK TESTS FOR PM, NOX, SO2, OPACITY, CO			HOURLY			ANNUAL			
LA-0136	COGENERATION FACILITY	7/23/2008	BURNERS	GAS	287	6 MMBTU/H	EMISSION POINTS GT-500, -600, -700, -800.	USE OF CLEAN BURNING FUELS USE OF CLEAN BURNING FUEL	33.5 lb/hr	MAXIMUM	139	T/YR	MAXIMUM	0		+
LA-0192	CRESCENT CITY POWER	6/6/2005	GAS TURBINES - 187 MW (2) TWO COMBINED		200	6 MMBTU/H		AND GOOD COMBUSTION PRACTICES GOOD COMBUSTION DESIGN/ PROPER OPERATING PRACTICES/	29.4 lb/hr	HOURLY MAXIMUM	128.8	T/YR	ANNUAL MAXIMUM	0		NOT AVAILABLE
LA-0224	ARSENAL HILL POWER PLANT	3/20/2008	CYCLE GAS TURBINES Combined Cycle	NATURAL GAS	211	0 MMBTU/H	CTG-1 TURBINE/DUCT BURNER (EQT012) CTG-2 TURBINE/DUCT BURNER(EQT013)	PIPELINE QUALITY NATURAL GAS AS FUEL	24.23 lb/hr	MAX	0			0		
	SABINE PASS LNG		Refrigeration Compressor					Good combustion practices and fueled by		HOURLY						
LA-0257 MI-0366	BERRIEN ENERGY, LLC		3 COMBUSTION TURBINES AND DUCT BURNERS	natural gas NATURAL		6 MMBTU/H 4 MMBTU/H	GE LM2900-G4 EACH TURBINE IS EQUIPPED WITH A HEAT RECOVERY STEAM GENERATOR (HRSG), EACH HRSG IS EQUIPPED WITH A NATURAL GAS FREED DUCT BURNER (659 MMBTUH), TOTAL NOMBAL PLAN GENERATING CAPACITY WITHOUT DUCT FIRNG IS 800 MW. A MAX OUTPUT OF 1100 MW THROUGH SUPPLEMENTAL FIRNG OF HRSG.	natural gas STATE OF THE ART COMBUSTION TECHNIQUES AND USE OF NATURAL GAS ARE BACT FOR PM10.	2.08 lb/hr	MAXIMUM	202.2	T/YR		0		
111 0300	BERKEN CALERO LEC	70.137.2003	COMBINED CYCLE COMBUSTION	G/G	130	, man of the	COMBUSTION TURBINE PERMITTED TO USE NG & NO. 2 OIL; DUCT BURNER	1110	1910		233.3	, in the second				CTG OIL & DB NOT OPERATE
MN-0071	FAIRBAULT ENERGY PARK	6/5/2007	TURBINE W/DUCT BURNER TURBINE, COMBINED CYCLE, NATURAL GAS,	NATURAL CGAS	175	8 MMBTU/H	PERMITTED TO USE NG & NO. 2 OIL. DUCT BURNER ALSO AUTHORIZED TO COMBINIT LOUDIB BIOFLE. Each of those units have a natural gas-fired heat recovery steam generator and a natural gas-fired duct burner. Each CT combusts natural gas as the primary field and very low-salfar No. 2 field oil as hackuffe life. The use of field oil is limited to 1,200 hours per year and only during the months of November through March, and is listed as a separate process. These units are listed as a combined source (all three units) for each type of	USE OF ONLY CLEAN-BURNING LOW-SULFUR FUELS AND GOOD COMBUSTION	0.01 LB/MMBTU	CTG NG OR CTG & DB NG	0.015	LB/MMBTU	CTG NG & DB OIL	0.03	LB/MMBTU	OR DB NG OR OIL
NC-0101	FORSYTH ENERGY PLANT	9/29/2005	(3) TURBINE & amp; DUCT BURNER, COMBINED	GAS	1844.	3 MMBTU/H	fuel.	PRACTICES.	0.019 LB/MMBTU	average	0			0		
NC 0101	EODEVTH ENERGY PLANT	0,00,000	CYCLE, NAT GAS	NATURAL	1044	3 MMBTU/H	Each of these units have a natural gas-fired HRSG & a natural gas fired duet burner. Limits for this process	CLEAN BURNING LOW-SULFUR FUELS AND GOOD COMBUSTION PRACTICES	0.001 DAR (777)	2 ho						
NC-0101	FORSYTH ENERGY PLANT	9/29/2005	TURBINE,	GAS	1844.	3 MMBTU/H	are for turbines and duet burners.	CLEAN FUELS - NATURAL GAS	0.021 LB/MMBTU	3-hr avg	0			1 0		\vdash
NJ-0074	WEST DEPTFORD ENERGY	5/6/2009	CYCLE	NATURAL GAS	1729	8 MMFT3/YR		AND ULTRA LOW SULFUR (15PPM SULFUR) DISTILLATE OIL	18.66 lb/hr	No pro-	0		wante	0		
NY-0095	CAITHNES BELLPORT ENERGY CENTER	5/10/2006	COMBUSTION TURBINE	NATURAL GAS	222	I MMBUT/H	COMBINED CYCLE WITH DUCT FIRING UP TO 494 MMBTU/H	LOW SULFUR FUEL	0.0055 LB/MMBTU	NO DUCT BURNING	0.0066	LB/MMBTU	W/DUCT BURNING	0		
OK-0115	LAWTON ENERGY COGEN FACILITY	12/12/2006	COMBUSTION TURBINE AND DUCT BURNER					GOOD COMBUSTION PRACTICES	0.0067 LB/MMBTU		0			0		
OK-0117	PSO SOUTHWESTERN POWER PLT	2/9/2007	GAS-FIRED TURBINES COMBUSTION					USE OF LOW ASH FUEL (NATURAL GAS) AND EFFICIENT COMBUSTION	0.0093 LB/MMBTU		0			0		
			TURBINE & amp; HEAT RECOVERY				GE 7241FA TURBINE AND DUCT BURNER.									
OR-0041	WANAPA ENERGY CENTER	8/8/2005	STEAM GENERATOR	NATURAL GAS	2384.	I MMBTU/H	COMBUSTION TURBINE - 1,778.5 MMBTU/HR DUCT BURNER - 605.6 MMBTU/HR		0	SEE POLUTANT NOTE	0			0		

nr (11)	EACH ITV NOTE	PERMIT ISSUANCE DATE	PROCESS NAME	PRIMARY	THEOLIGIPAT	THEOLIGIPATA	DDOCESS NOTES	CONTROL METHOD DESCRIPTION	EMISSION LIMIT 1 UN		AVG TIME	EMISSION LIMIT 2	UNIT	AVG TIME	STANDARAD EMISSION LIMIT	UNIT	AVG TIM
	FACILITY NAME	DATE	COMBINED	JFUEL .	THROUGHPUT	THROUGHPUT UNIT	PROCESS NOTES	DESCRIPTION	LIMIT 1 UN	a1 (CONDITION	LIMIT 2	UNIT	CONDITION	EMISSION LIMIT	UNIT	CONDITI
			CYCLE NATURAL	-					(l								
			GAS-FIRED ELECTRIC						i l								
			GENERATING	NATURAL					į l				1				
0048	CARTY PLANT	12/29/2010	UNIT	GAS	286	6 MMBTU/H		CLEAN FUEL	2.5 LB	B/MMCF			0			0	
							Two combine cycle Turbines, each with a combustion turbine and heat recovery steam		i l								
			Combined-cycle				generator with duct burner. Each combined-cycle process will be rated at 468 MW or less.		i l								
	MOXIE LIBERTY		Turbines (2) -				The heat input rating of each combustion gas turbine is 2890 MMBtu/hr (HHV) or less, and the		i l	F	FOR 468 MW			FOR 454 MW			
0278	LLC/ASYLUM POWER PL T	10/10/2012	Natural gas fired	Natural Gas	327	7 MMBTU/H		content.	0.004 LB	/MMBTU F	POWERBLOCK	0.005	7 LB/MMBTU	POWERBLOCK		0	_
							GREEN POWER ONE WILL CONSIST OF TWO NOMINALLY RATED 35 MW GAS		i l								
							FIRED TURBINES AND TWO HEAT RECOVERY STEAM GENERATORS, EQUIPPED WITH 312 MMBTU/HR DUCT BURNERS. THE COMBUSTION TURBINES WILL		i l								
							ONLY BURN PIPELINE QUALITY SWEET NATURAL GAS. THE DUCT BURNERS		í l								
							WILL BURN NATURAL GAS, COMPLEX GAS OR MIXTURES OF NATURAL GAS		i l								
							AND COMPLEX GAS, STEAM PRODUCED IN THE HRSGS WILL BE USED IN THE CHOCOLATE BAYOU WORKS CHEMICAL COMPLEX. THE CHEMICAL COMPLEX	THE USE OF PROPER COMBUSTION	í l								
			COGENERATION				WILL CONSUME APPROXIMATELY HALF OF THE ELECTRICAL OUTPUT	CONTROL AND FIRING ONLY	i l								
			TRAIN 2 AND 3				PRODUCED BY THE TWO NEW TURBINES. EXCESS POWER PRODUCED BY THE	GASEOUS FUELS CONTAINING NO	í l								
	INEOS CHOCOLATE		(TURBINE AND DUCT BURNER	NATURAL			COMBUSTION TURBINES WILL BE SOLD TO THE GRID.	ASH IS BACT FOR PARTICULATE MATTER FROM THE GAS FIRED	í l								
0497	BAYOU FACILITY	8/29/2006	EMISSIONS)	GAS	,	5 MW	THE EMISSIONS ARE PER TRAIN.	TURBINES AND DUCT BURNERS.	10.03 lb/h	/hr		71.3	2 T/YR			0	
	DATE OF THE REAL PROPERTY.	0/2//2000	EMISSIONS) WESTINGHOUSE/	Turib					10.05 101			74.2	10.11				
			SIEMENS MODEL					STEAG POWER LLC REPRESENTS	í l								
	NACOGDOCHES POWER		SW501F GAS TURBINE W/416.5		1			THE FIRING OF PIPELINE NATURAL GAS IN THE COMBUSTION	(
	STERNE GENERATING		MMBTU DUCT	NATURAL				TURBINES AND DUCT FIRED HRSGS AS BACT FOR PM10.	į l				1				
1502	FACILITY	6/5/2006	BURNERS	GAS	19	0 MW		AS BACT FOR PM10.	26.9 lb/h	hr		275.	4 T/YR			0	
	CITY PUBLIC SERVICE JK SPRUCE ELECTRICE		SPRUCE POWER GENERATOR						į l				1				
516	GENERATING UNIT 2	12/28/2005	UNIT NO 2						264 lb/!	hr		52	5 T/YR			0	
		12.20/2003	1				The plant will be designed to generate 1,350 nominal megawatts of power. There are two										
			1				configuration scenarios: either four Siemens SGT6-5000F CTGs in combined-cycle mode (Scenario A) or four GE Frame 7FA CTGs in combined cycle mode (Scenario B). Scenario B	use low ash fuel (natural gas or low sulfur diesel as a backup) and good combustion	i l				1				
0590	KING POWER STATION	8/5/2010	Turbine	natural gas	135	0 MW	also includes one or two auxiliary boilers.	practices	11.1 lb/h	hr		10:	8 lb/hr			0	
	ICHANNEL ENERGY		Combined Cycle				The turbine is a Siemens 501F rated at a nominal 180 MW and the duct burner will have a	Good combustion and the use of gaseous				19.	1	1			
0618	CENTER LLC	10/15/2012	Turbine	natural gas	18	0 MW	maximum design heat input of 475 MMBtwhr. natural gas-fired combined cycle turbine generator with a heat recovery steam generator	fuel	27 lb/ł	hr			0			0	_
			1				natural gas-fired combined cycle turbine generator with a heat recovery steam generator equipped with a duct burner. The turbine is a Siemens 501F rated at a nominal 180 megawatts		i l				1				
	DEER PARK ENERGY		Combined Cycle				and the DB will have a maximum design rate capability of 725 million British thermal units		į I .				1				
0619	CENTER	9/26/2012	Turbine	natural gas	18	0 MW	per hour	good combustion and use of natural gas	27 lb/ł	hr			0		-	0	_
	GATEWAY COGENERATION 1, LLC -		COMBUSTION				Burns primarily natural gas but has the capacity to burn up to 500 hours of ultra low sulfur	Clean-burning fuels and good combustion	į I .				1				
0319	SMART WATER PROJECT	8/27/2012	TURBINES, (2)	Natural Gas	59	3 MMBTU/H	diesel fuel (ULSD) as backup.	practices.	5 lb/l	hr	3 H AVG		0			0	
			GE 7FA														
			COMBUSTION TURBINE & amp;						í l								
			HEAT RECOVERY	4			THREE IDENTICAL CT & HSRG UNITS. EACH CT WILL HAVE AN ANNUAL		í l								
	BP CHERRY POINT		STEAM	NATURAL			AVERAGE CAPACITY RATING OF 1614 MMBTU/HR. EACH HRSG DUCT BURNER	LIMIT FUEL TYPE TO NATURAL	í l								
-0328	COGENERATION PROJECT	1/11/2005	GENERATOR	GAS	17	4 MW	WILL HAVE A MAXIMUM FIRING RATE OF 105 MMBTU/HR.	GAS	0		1-hr average; Duct		0	1-hr average; Duct		0	*SEE NO
	Astoria Energy LLC		Combustion Turbine	Natural Gas	100	0 MW		Clean Fuel	0.0098 lb/N	MMBtu J	Burners On	1:	8 lb/hr	Burners On	1		
	Tenaska Partners LLC		Combustion Turbine	Natural Gas		7 MMBtu/hr		 	11.8 lb/h 0.0064 lb/h	hr		0.003	9 lb/MMBtu	_		-	_
	Hawkeye Generating, LLC Hawkeye Generating, LLC			Natural Gas Natural Gas	61	5 MW 5 MW			0.0063 lb/N	MMBtu		121.7 121.7	7 tpv				
	Liberty Electric Power, LLC				195	4 MMBtu/hr	With DB		28.1 lb/h	hr							
	Catoctin Power LLC		Combustion Turbine	Notural Gas	17	0 MW		Pipeline quality low sulfur NG; DLN combustion design	21.1 lb/h	One .	3-hr average						
	Gibson County Generation,		Compussion Turbine	Naturai Gas	17	JWW		comoustion design	21.1 10/1	ar 3	3-nr average						
	LLC		Combustion Turbine	Natural Gas	41	7 MW			0.0048 lb/N	MMBtu 2	24-hr average						
	York Energy Center Block 1					4 MMBtu/hr											
	Footprint Power Salem Harbor Development LP	I			15/	11111111111111			0.0141 lb/N		hourly basis		-	I be over a P			_
	Footprint Power Salem Harbor		Combustion Turbine	Natural Gas				Clean Fuel	0.0141 lb/.	1	1-hr average; Duct	0.006	2 lb/MMBtu	1-hr average; Duct Burners On	1		
	rootprint rower Salein Haroot		Combustion Turbine		34	6 MW		Clean Fuel	13 lb/h	/hr E	1-hr average; Duct Burners On 1-hr average; Duct	0.006	2 lb/MMBtu		1		
	Development LP		Combustion Turbine	Natural Gas	34			Clean Fuel Clean Fuel	0.0141 lb/h	/hr E	1-hr average; Duct Burners On	0.006	2 lb/MMBtu		1		
_	Development LP		Combustion Turbine	Natural Gas	344	6 MW			13 lb/h 0.041 lb/h	/hr E /MW-hr E	1-hr average; Duct Burners On 1-hr average; Duct Burners On		2 lb/MMBtu 8 lb/MMBtu	Burners On	i .		
	Development LP Kalama Energy Center		Combustion Turbine	Natural Gas Natural Gas	34i 34i 224'	6 MW 6 MW 7 MMBtu/hr			13 lb/h	1 E	1-hr average; Duct Burners On 1-hr average; Duct Burners On 3-hr average				1		
	Development LP		Combustion Turbine	Natural Gas	34i 34i 224'	6 MW			13 lb/h 0.041 lb/h	1 E	1-hr average; Duct Burners On 1-hr average; Duct Burners On			Burners On	i		
	Development LP Kalama Energy Center Kalama Energy Center		Combustion Turbine Combustion Turbine Combustion Turbine	Natural Gas Natural Gas Natural Gas	34i 34i 224i 224i	6 MW 6 MW 7 MMBtu/hr 7 MMBtu/hr			13 lb/h 0.041 lb/h	1 E	1-hr average; Duct Burners On 1-hr average; Duct Burners On 3-hr average			Burners On			
	Development LP Kalama Energy Center Kalama Energy Center GenConn Middletown LLC		Combustion Turbine Combustion Turbine Combustion Turbine Combustion Turbine	Natural Gas Natural Gas Natural Gas Natural Gas	34i 34i 224i 224i	6 MW 6 MW 7 MMBtu/hr			13 lb/h 0.041 lb/h 17.1 lb/h 70 tpy 6 lb/h	1	1-hr average; Duct Burners On 1-hr average; Duct Burners On 3-hr average			Burners On			
	Development LP Kalama Energy Center Kalama Energy Center		Combustion Turbine Combustion Turbine Combustion Turbine	Natural Gas Natural Gas Natural Gas	34i 34i 224i 224i	6 MW 6 MW 7 MMBtu/hr 7 MMBtu/hr			13 lb/h 0.041 lb/h	1	1-hr average; Duct Burners On 1-hr average; Duct Burners On 3-hr average 12-mo rolling 30-day rolling average			Burners On			
	Development LP Kalama Energy Center Kalama Energy Center GenConn Middletown LLC PacifiCorp Energy		Combustion Turbine Combustion Turbine Combustion Turbine Combustion Turbine Block 1 CT	Natural Gas Natural Gas Natural Gas Natural Gas Natural Gas Natural Gas	344 346 224 224 474.	6 MW 7 MMBtu/hr 7 MMBtu/hr 9 MMBtu/hr			13 lb/h 0.041 lb/h 17.1 lb/h 70 tpy 6 lb/h	1	1-hr average; Duct Burners On 1-hr average; Duct Burners On 3-hr average 12-mo rolling 30-day rolling average 30-day rolling			Burners On			
	Development LP Kalama Energy Center Kalama Energy Center GenConn Middletown LLC PacifiCorp Energy PacifiCorp Energy		Combustion Turbine Combustion Turbine Combustion Turbine Combustion Turbine Block 1 CT Block 2 CT	e Natural Gas e Natural Gas e Natural Gas e Natural Gas Natural Gas Natural Gas Natural Gas	344 344 224 224 474.4	6 MW 6 MW 7 MMBtu³hr 7 MMBtu³hr 9 MMBtu³hr			13 lb/h 0.041 lb/h 17.1 lb/h 70 tpy 6 lb/h 10.8 lb/h 14 lb/h	1	1-hr average; Duct Burners On 1-hr average; Duct Burners On 3-hr average 12-mo rolling 30-day rolling average			Burners On			
	Development LP Kalama Energy Center Kalama Energy Center GenConn Middletown LLC PacifiCorp Energy PacifiCorp Energy Pioneer Valley		Combustion Turbine Combustion Turbine Combustion Turbine Combustion Turbine Block 1 CT	Natural Gas Natural Gas Natural Gas Natural Gas Natural Gas Natural Gas	344 344 224 224 474.4	6 MW 7 MMBtu/hr 7 MMBtu/hr 9 MMBtu/hr			13 lb/h 0.041 lb/h 17.1 lb/h 70 tpy 6 lb/h	hr E MW-hr E hr 3 y 1 hr a hr a whr a whr a whr a whMBtu	1-hr average; Duct Burners On 1-hr average; Duct Burners On 3-hr average 12-mo rolling 30-day rolling average average			Burners On			
	Development LP Kalama Energy Center Kalama Energy Center GenConn Middletown LLC PacifiCorp Energy PacifiCorp Energy Pioneer Valley Sevier Power Company Power		Combustion Turbine Combustion Turbine Combustion Turbine Combustion Turbine Block 1 CT Block 2 CT Combustion Turbine	Natural Gas Natural Gas Natural Gas Natural Gas Natural Gas Natural Gas Natural Gas Natural Gas Natural Gas Natural Gas	344 344 224 224 474.	6 MW 7 MMBnu'hr 9 MMBnu'hr 9 MMBnu'hr 9 MW 7 MW			13 lb/h 0.041 lb/h 17.1 lb/h 70 tpy 6 lb/h 10.8 lb/h 14 lb/h	hr E MW-hr E hr 3 y 1 hr a hr a whr a whr a whr a whMBtu	1-hr average; Duct Burners On 1-hr average; Duct Burners On 3-hr average 12-mo rolling 30-day rolling average 30-day rolling average 30-day rolling			Burners On			
	Development LP Kalama Energy Center Kalama Energy Center GenConn Middletown LLC PacifiCorp Energy PacifiCorp Energy Pioneer Valley		Combustion Turbine Combustion Turbine Combustion Turbine Combustion Turbine Block 1 CT Block 2 CT Combustion Turbine Combustion Turbine	e Natural Gas e Natural Gas e Natural Gas e Natural Gas Natural Gas Natural Gas Natural Gas	344 344 224 224 474.	6 MW 6 MW 7 MMBtu³hr 7 MMBtu³hr 9 MMBtu³hr			13 lb/h 0.041 lb/h 17.1 lb/h 70 tpy 6 lb/h 10.8 lb/h 14 lb/h	htr	1-hr average; Duct Burners On 1-hr average; Duct Burners On 3-hr average 12-mo rolling 30-day rolling average 30-day rolling average 30-day rolling average 30-day rolling average			Burners On			
	Development LP Kalama Energy Center Kalama Energy Center GenConn Middletown LLC PacifiCorp Energy PacifiCorp Energy PacifiCorp Energy Pioner Valley Sevier Power Company Power Plant		Combustion Turbine Combustion Turbine Combustion Turbine Combustion Turbine Block 1 CT Block 2 CT Combustion Turbine Combustion Turbine Combustion Turbine COMBINED CYCLE TURBINE	Natural Gas Natural Gas Natural Gas Natural Gas Natural Gas Natural Gas Natural Gas Natural Gas Natural Gas Natural Gas	344 344 224 224 474.	6 MW 7 MMBnu'hr 9 MMBnu'hr 9 MMBnu'hr 9 MW 7 MW		Clean Fuel	13 lb/h 0.041 lb/h 17.1 lb/h 70 tpy 6 lb/h 10.8 lb/h 14 lb/h	1	1-hr average; Duct Burners On 1-hr average; Duct Burners On 3-hr average 12-mo rolling 30-day rolling average average 30-day rolling average (WITH DUCT			Burners On			
	Development LP Kalama Energy Center Kalama Energy Center GenCoon Middletown LLC PseiffCoon Energy PseiffCoon Energy PseiffCoon Energy Psource Valley Sevier Power Company Power Plant WARREN COUNTY POWER		Combustion Turbine Combustion Turbine Combustion Turbine Combustion Turbine Block 1 CT Block 2 CT Combustion Turbine Combustion Turbine Combustion Turbine COMBINED CYCLE TURBINE	Natural Gas Natural Gas Natural Gas Natural Gas Natural Gas Natural Gas Natural Gas Natural Gas Natural Gas Natural Gas Natural Gas Natural Gas Natural Gas	344 344 224 224 474. 62 38 \$88	6 MW 6 MW 7 MMBtuhr 7 MMBtuhr 9 MMBtuhr 9 MMBtuhr 9 MW 7 MW	Emissions are for one of three units (Mitsubishi natural gas-fired combastion turbine (CT)	Clean Fuel Clean Fuel Oxidation catalyst and good combustion	13 bh	1	1-hr average; Duct Burners On 1-hr average; Duct Burners On 3-hr average 12-mo rolling 30-day rolling average 30-day rolling average (WITH DUCT BURNER	0.006	8 lb/MMBtu	Burners On			
	Development LP Kalama Energy Center Kalama Energy Center Gen Conn Middletown LLC Pacific Corp Energy Pacific Corp Energy Pioneer Valley Sevier Power Company Power Plant WARREN COUNTY POWER PLANT - DOMINION		Combustion Turbine Combustion Turbine Combustion Turbine Combustion Turbine Block 1 CT Block 2 CT Combustion Turbine Combustion Turbine	Natural Gas Natural Gas Natural Gas Natural Gas Natural Gas Natural Gas Natural Gas Natural Gas Natural Gas Natural Gas	344 344 224 224 474. 62 38 \$88	6 MW 7 MMBnu'hr 9 MMBnu'hr 9 MMBnu'hr 9 MW 7 MW	Emissions are for one of three units (Mitsubishi natural gas-fired combustion turbine (CT) generator, Model M501 GAC).	Clean Fuel	13 lb/h 0.041 lb/h 17.1 lb/h 70 tpy 6 lb/h 10.8 lb/h 14 lb/h	1	1-hr average; Duct Burners On 1-hr average; Duct Burners On 3-hr average 12-mo rolling 30-day rolling average average 30-day rolling average (WITH DUCT	0.006		Burners On			
	Development LP Kalama Energy Center Kalama Energy Center Kalama Energy Center Gen Conn Middletown LLC Pacific Corp Energy Pacific Corp Energy Pioner Valley Sevier Power Company Power Plant WARREN COUNTY POWER PLANT - DOMINION Woodbridge Energy Center (CPV Shore, LLC)		Combustion Turbine Combustion Turbine Combustion Turbine Combustion Turbine Block 1 CT Block 2 CT Combustion Turbine Combustion Turbine Combustion Turbine COMBINED CYCLE TURBINE	Natural Gas Natural Gas Natural Gas Natural Gas Natural Gas Natural Gas Natural Gas Natural Gas Natural Gas Natural Gas Natural Gas Natural Gas Natural Gas	344 344 224 224 474. 62 38 58	6 MW 6 MW 7 MMBtuhr 7 MMBtuhr 9 MMBtuhr 9 MMBtuhr 9 MW 7 MW	Emissions are for one of three units (Mitsubishi natural gas-fired combustion turbine (CT) generator, Model M501 GAC).	Clean Fuel Clean Fuel Oxidation catalyst and good combustion	13 bh	1	1-hr average; Duct Burners On 1-hr average; Duct Burners On 3-hr average 12-mo rolling 30-day rolling average 30-day rolling average (WITH DUCT BURNER	0.006	8 lb/MMBtu	Burners On			
	Development LP Kalama Energy Center Kalama Energy Center GenCoan Middletona LLC PacifiCorp Energy PacifiCorp Energy Pioner Valley Sevier Power Company Power Plant WARREN COUNTY POWER PLANT - DOMINION Woodbridge Energy Center (CPV Shore, LLC)		Combustion Turbine Combustion Turbine Combustion Turbine Combustion Turbine Block 1 CT Block 2 CT Combustion Turbine Combustion Turbine Combustion Turbine COMBINED CYCLE TURBINE	Natural Gas Natural Gas Natural Gas Natural Gas Natural Gas Natural Gas Natural Gas Natural Gas Natural Gas Natural Gas Natural Gas Natural Gas Natural Gas Natural Gas	344 344 224 224 474.1 622 38 58 299 280	6 MW 6 MW 7 MMBtashe 7 MMBtashe 9 MMBtashe 9 MW 7 MW 0 MW 7 MW 0 MW 7 MW	Emissions are for one of three units (Mitsubishi natural gas-fired combastion turbine (CT) generator, Model M501 GAC).	Clean Fuel Clean Fuel Oxidation catalyst and good combustion	13 John John John John John John John John	1	1-hr average; Duct Burners On 1-hr average; Duct Burners On 3-hr average 12-mo rolling 30-day rolling average 30-day rolling average (WITH DUCT BURNER	0.006	8 lb/MMBtu	Burners On			
	Development LP Kalama Energy Center Kalama Energy Center Kalama Energy Center Gen Conn Middletown LLC Pacific Corp Energy Pacific Corp Energy Pioner Valley Sevier Power Company Power Plant WARREN COUNTY POWER PLANT - DOMINION Woodbridge Energy Center (CPV Shore, LLC)		Combustion Turbine Combustion Turbine Combustion Turbine Combustion Turbine Block 1 CT Block 2 CT Combustion Turbine Combustion Turbine Combustion Turbine COMBINED CYCLE TURBINE	Natural Gas Natural Gas Natural Gas Natural Gas Natural Gas Natural Gas Natural Gas Natural Gas Natural Gas Natural Gas Natural Gas Natural Gas	344 344 224 224 474.1 622 38 58 299 280	6 MW 6 MW 7 MMBtuhr 7 MMBtuhr 9 MMBtuhr 9 MW 7 MW 0 MW	Emissions are for one of three units (Mitsubishi natural gas-fired combustion turbine (CT) generator, Model M501 GAC).	Clean Fuel Clean Fuel Oxidation catalyst and good combustion	13 lish 10 0.041 lish 17.1 lish 17.1 lish 17.0 lish 17.1 lish 17.0 lish 18.1 lish 19.1	1	1-hr average; Duct Burners On 1-hr average; Duct Burners On 3-hr average 12-mo rolling 30-day rolling average 30-day rolling average (WITH DUCT BURNER	0.006	8 lb/MMBtu	Burners On			
	Development LP Kalama Energy Center Kalama Energy Center GenCoan Middletona LLC PacifiCorp Energy PacifiCorp Energy Pioner Valley Sevier Power Company Power Plant WARREN COUNTY POWER PLANT - DOMINION Woodbridge Energy Center (CPV Shore, LLC)		Combustion Turbine Combustion Turbine Combustion Turbine Combustion Turbine Block 1 CT Block 2 CT Combustion Turbine Combustion Turbine Combustion Turbine COMBINED CYCLE TURBINE	Natural Gas Natural Gas Natural Gas Natural Gas Natural Gas Natural Gas Natural Gas Natural Gas Natural Gas Natural Gas Natural Gas Natural Gas Natural Gas Natural Gas	344 344 224 224 474, 62 38 58 299 280 230	6 MW 6 MW 7 MMBtashe 7 MMBtashe 9 MMBtashe 9 MW 7 MW 0 MW 7 MW 0 MW 7 MW	Emissions are for one of three units (Mitsubishi natural gas-fired combustion turbine (CT) generator. Model MS01 GAC).	Clean Fuel Clean Fuel Oxidation catalyst and good combustion	13 John John John John John John John John	he I he I he I had been I he I he I he I he I he I he I he I	1-hr average; Duct Burners On 1-hr average; Duct Burners On 3-hr average 12-mo rolling 30-day rolling average 30-day rolling average (WITH DUCT BURNER	0.006	8 lb/MMBtu	Burners On			
	Development LP Kalama Energy Center Kalama Energy Center GenCom Middletown LLC Pacificorn Energy Pacificorn Energy Pacificorn Energy Pioneer Valley Sevier Power Company Power Plant WARREN COUNTY POWER PLANT - DOMINION Woodlrodge Energy Center CPV Shore, LLC Woodlrodge Energy Center CPV Shore, LLC Hummel Station LLC		Combustion Turbine Combustion Turbine Combustion Turbine Combustion Turbine Block 1 CT Block 2 CT Combustion Turbine Combustion Turbine Combustion Turbine COMBINED CYCLE TURBINE &, DUCT BURNER, 3 Combustion Turbine	Natural Gas Natural Gas Natural Gas Natural Gas Natural Gas Natural Gas Natural Gas Natural Gas Natural Gas Natural Gas Natural Gas Natural Gas Natural Gas Natural Gas Natural Gas Natural Gas Natural Gas Natural Gas	344 344 224 224 474. 62 38 58 299 290 230 225	6 MW 6 MW 7 MMBsahr 7 MMBsahr 9 MMBsahr 9 MW 0 MW 0 MW 0 MW 7 MMBsahr 7 MW 0 MW 7 MMBsahr 7 MMBsahr 4 MMBsahr 7 MMBsahr 7 MMBsahr 7 MMBsahr	Emissions are for one of three units (Mitsubishi natural gas-fired combustion turbine (CT) generator, Model M501 GAC).	Clean Fuel Clean Fuel Oxidation catalyst and good combustion	13 John John John John John John John John	he I he I he I had been I he I he I he I he I he I he I he I	1-hr average; Duct Burners On 1-hr average; Duct Burners On 3-hr average 12-mo rolling 30-day rolling average 30-day rolling average (WITH DUCT BURNER	0.006	8 lb/MMBtu	Burners On			
	Development LP Kalama Energy Center Kalama Energy Center Commission of the Commissio		Combustion Turbine Combustion Turbine Combustion Turbine Combustion Turbine Block 1 CT Block 2 CT Combustion Turbine Combustion Turbine Combustion Turbine Combustion Turbine COMBINED CYCLE TURBINE Samp; DUCT BURNER, 3	Natural Gas Natural Gas Natural Gas Natural Gas Natural Gas Natural Gas Natural Gas Natural Gas Natural Gas Natural Gas Natural Gas Natural Gas Natural Gas Natural Gas Natural Gas Natural Gas Natural Gas	344 344 224 224 474. 62 38 58 299 290 230 225	6 MW 6 MW 7 MMBtashr 7 MMBtashr 9 MMBtashr 9 MW 7 MW 0 MW 7 MMBtashr 9 MW 7 MW 0 MW 7 MMBtashr 7 MW	Emissions are for one of three units (Misubishi natural gas-fired combustion turbine (CT) generator, Model MS0 I GAC).	Clean Fuel Clean Fuel Oxidation catalyst and good combustion	13 John John John John John John John John	he I he I he I had been I he I he I he I he I he I he I he I	1-hr average; Duct Burners On 1-hr average; Duct Burners On 3-hr average 12-mo rolling 30-day rolling average 30-day rolling average (WITH DUCT BURNER	0.006	8 lb/MMBtu	Burners On			
	Development LP Kalama Energy Center Kalama Energy Center GenCom Middletown LLC Pacificorn Energy Pacificorn Energy Pacificorn Energy Pioneer Valley Sevier Power Company Power Plant WARREN COUNTY POWER PLANT - DOMINION Woodlrodge Energy Center CPV Shore, LLC Woodlrodge Energy Center CPV Shore, LLC Hummel Station LLC		Combustion Turbine Combustion Turbine Combustion Turbine Block 1 CT Block 2 CT Combustion Turbine COMBUSTION TURBINE COMBUSTION TURBINE COMBUSTION TURBINE SAMP, DUCT BURNER, 3 Combustion Turbine Combustion Turbine Combustion Turbine	Natural Gas Natural Gas	344 344 224 224 474. 62 38 588 299 280 230 225 225	6 MW 6 MW 7 MMBsahr 7 MMBsahr 9 MMBsahr 9 MW 0 MW 0 MW 0 MW 7 MMBsahr 7 MW 0 MW 7 MMBsahr 7 MMBsahr 4 MMBsahr 7 MMBsahr 7 MMBsahr 7 MMBsahr	Emissions are for one of three units (Mitsubishi natural gas-fired combastion turbine (CT) generator, Model M501 GAC).	Clean Fuel Clean Fuel Oxidation catalyst and good combustion	13 John John John John John John John John	he I he I he I had been I he I he I he I he I he I he I he I	1-hr average; Duct Burners On 1-hr average; Duct Burners On 3-hr average 12-mo rolling 30-day rolling average 30-day rolling average (WITH DUCT BURNER	0.006	I IbMMBtu	Burners On			
	Development LP Kalama Energy Center Kalama Energy Center Center GenCom Middletown LLC PacifiCorp Energy PacifiCorp Energy PacifiCorp Energy PacifiCorp Energy Wood Tool Company Power Plant WARREN COUNTY POWER PLANT - DOMINION Woodbraghe Energy Center (CPV Shore, LLC) Hammel Station LLC Glisson County Generation, LLC Glisson County Generation, LLC		Combustion Turbine Combustion Turbine Combustion Turbine Combustion Turbine Block 1 CT Block 2 CT Combustion Turbine Combustion Turbine Combustion Turbine COMBINED CYCLE TURBINE &, DUCT BURNER, 3 Combustion Turbine	Natural Gas Natural Gas	344 344 224 224 474. 62 38 58 299 220 220 225 225	6 MW 6 MW 7 MMBtauhr 7 MMBtauhr 9 MMBtauhr 9 MW 7 MW 0 MW 6 MMBTU/H 7 MMBtauhr 7 MW 4 MMBtauhr 4 MMBtauhr 4 MMBtauhr 4 MMBtauhr 4 MMBtauhr 7 MW	generator/Model M501 GAC).	Clean Fuel Clean Fuel Oxidation catalyst and good combustion	13 lbsh 0.041 lbsh 0.041 lbsh 17.1 lbsh 10.8 lbsh 10.8 lbsh 10.8 lbsh 14 lbsh 14 lbsh 15 lbsh 15 lbsh 15 lbsh 16 lbsh 16 lbsh 16 lbsh 16 lbsh 17.3 lbsh 17.3 lbsh 18.1 lbsh	he I he I he I he I he I he I he I he I	1-hr average; Duct Burners On 1-hr average; Duct Burners On 3-hr average 12-mo rolling 30-day rolling average 30-day rolling average (WITH DUCT BURNER	0.006	8 lb/MMBtu	Burners On 3-hr average			
	Development LP Kalama Energy Center Kalama Energy Center Kalama Energy Center Gen Com Middletown LLC Pacific Energy Pacific Pa	6152015	Combustion Turbine Combustion Turbine Combustion Turbine Block 1 CT Block 2 CT Combustion Turbine COMBUSTION TURBINE COMBUSTION TURBINE COMBUSTION TURBINE SAMP, DUCT BURNER, 3 Combustion Turbine Combustion Turbine Combustion Turbine	Natural Gas Natural Gas	344 344 224 224 474. 62 38 58 299 220 220 225 225	6 MW 6 MW 7 MMBauhr 7 MMBauhr 9 MMBauhr 9 MW 0 MW 0 MW 0 MMBTUH 7 MMBauhr 1 MMBauhr 1 MMBauhr 4 MMBauhr 4 MMBauhr 4 MMBauhr 4 MMBauhr	Emissions are for one of three units (Mitsuhishi natural gas-fired combustion turbine (CT) generator, Model M501 GAC).	Clean Fuel Clean Fuel Oxidation catalyst and good combustion	13 John John John John John John John John	he	1-th average; Doet Burners On 1-th average; Doet Burners On 1-th average; Doet the Burners On 1-th average Doet 12-mo rolling average 12-mo rolling average average (WITH DUCT BURNER ERRING)	0.006	I IbMMBtu	Burners On 3-hr average			
	Development LP Kalama Energy Center Kalama Energy Center Center GenCom Middletown LLC PacifiCorp Energy PacifiCorp Energy PacifiCorp Energy PacifiCorp Energy PacifiCorp Energy WARREN COUNTY POWER PLANT - DOMINION WOOdfridge Energy Center CENTER - DOMINION CENTER - DOMINION CENTER - DOMINION WARREN COUNTY POWER PLANT - DOMINION WOOdfridge Energy Center CENTER - DOMINION CENTER - DOMINION CENTER - DOMINION Hummel Station LLC Glibban Caunty Generation, LLC York Energy Center Energy Center CENTER - DOMINION LLC WARREN COUNTY POWER Hummel Station LLC Glibban Caunty Generation, LLC York Energy Center Block 2		Combustion Turbine Combustion Turbine Combustion Turbine Block 1 CT Block 2 CT Combustion Turbine COMBUSTION TURBINE COMBUSTION TURBINE COMBUSTION TURBINE SAMP, DUCT BURNER, 3 Combustion Turbine Combustion Turbine Combustion Turbine	Natural Gas Natural Gas	344 344 224 224 474. 62 38 58 299 228 230 225 225 41 2512	6 MW 7 MMBtauhr 7 MMBtauhr 9 MMBtauhr 9 MW NW 7 MW 0 MW 6 MMBTUH 7 MMBtauhr 4 MMBtauhr 4 MMBtauhr 4 MMBtauhr 4 MMBtauhr 4 MMBtauhr 7 MW	generator/Model M591 GAC). firing NG with duct burner	Clean Fuel Clean Fuel Oxidation catalyst and good combustion	13	he	1-th average; Doet Burners On the Bu	0.006	I IbMMBtu	Burners On 3-hr average			
	Development LP Kalama Energy Center Kalama Energy Center Center GenCom Middletown LLC PacifiCorp Energy PacifiCorp Energy PacifiCorp Energy PacifiCorp Energy Wood Tool Company Power Plant WARREN COUNTY POWER PLANT - DOMINION Woodbraghe Energy Center (CPV Shore, LLC) Hammel Station LLC Glisson County Generation, LLC Glisson County Generation, LLC	6132013 6132013	Combustion Turbine Combustion Turbine Combustion Turbine Block 1 CT Block 2 CT Combustion Turbine COMBUSTION TURBINE COMBUSTION TURBINE COMBUSTION TURBINE SAMP, DUCT BURNER, 3 Combustion Turbine Combustion Turbine Combustion Turbine	Natural Gas Natural Gas	344 344 224 224 474. 62 38 58 299 228 230 225 225 41 2512	6 MW 6 MW 7 MMBtauhr 7 MMBtauhr 9 MMBtauhr 9 MW 7 MW 0 MW 6 MMBTU/H 7 MMBtauhr 7 MW 4 MMBtauhr 4 MMBtauhr 4 MMBtauhr 4 MMBtauhr 4 MMBtauhr 7 MW	generator/Model M501 GAC).	Clean Fuel Clean Fuel Oxidation catalyst and good combustion	13 lbsh 0.041 lbsh 0.041 lbsh 17.1 lbsh 10.8 lbsh 10.8 lbsh 10.8 lbsh 14 lbsh 14 lbsh 15 lbsh 15 lbsh 15 lbsh 16 lbsh 16 lbsh 16 lbsh 16 lbsh 17.3 lbsh 17.3 lbsh 18.1 lbsh	he	1-th average; Doet Burners On 1-th average; Doet Burners On 1-th average; Doet the Burners On 1-th average Doet 12-mo rolling average 12-mo rolling average average (WITH DUCT BURNER ERRING)	0.006	I IbMMBtu	Burners On 3-hr average			

		PERMIT ISSUANCE		PRIMARY				CONTROL METHOD	EMISSION			EMISSION		AVG TIME	STANDARAD		AVG TIME
RBLCID	FACILITY NAME	DATE	PROCESS NAME	FUEL	THROUGHPUT	THROUGHPUT UNIT	PROCESS NOTES	DESCRIPTION	LIMIT 1	UNIT	CONDITION	LIMIT 2	UNIT	CONDITION	EMISSION LIMIT	UNIT	CONDITION
	Cricket Valley Energy Center		Combustion Turbine	Natural Gas	1000	MW			0.00	06 lb/MMBtu	1-hr average						1 1
	Shell Chemical										combustion						
	Appalachia/Petrochemicals										turbines with duct						1 1
	Complex	6/18/2015			664	MMBtu/hr	each of the combustion turbines with duct burners		0.000	66 lb/MMBtu	burners						

		IPERMIT ISSUANCE	1	PRIMARY				CONTROL METHOD	IEMISSION		IAVG TIME	IEMISSION		IAVG TIME	ISTANDARAD		IAVG TIME
RBLCID	FACILITY NAME	DATE	PROCESS NAME	FUEL	THROUGHPUT	THROUGHPUT UNIT	PROCESS NOTES	DESCRIPTION	LIMIT 1	UNIT	CONDITION	LIMIT 2	UNIT	CONDITION	EMISSION LIMIT	UNIT	CONDITION
			Combined-cycle				3-on-1 combined cycle unit. GE 7HA.02 turbines, approximately 350 MW per turbine. Total										
	OKEECHOBEE CLEAN		electric generating				unit generating capacity is approximately 1,600 MW. Primarily fueled with natural gas.			GRAIN S/100 SC	F FOR NATURAL					'	1
FL-0356	ENERGY CENTER	3/9/2010	unit	Natural gas	309	MMBtu/hr per turbine	Permitted to burn the base-load equivalent of 500 hr/yr per turbine on ULSD.	Use of clean fuels		2 GAS	GAS	0.0015	% S IN ULSD	FOR ULSD		0	
	DANIA BEACH ENERGY		2-on-1 combined													'	1
*FL-0363	CENTER	12/4/201	cycle unit (GE 7HA) Natural gas	400	MMBtu/hr	Two nominal 430 MW combustion turbines, coupled to a steam turbine generator	Clean fuels		0		(0	
			EUCCT (Combined cycle CTG with	1			A 1,934.7 MMBTU/H natural gas fired heavy frame industrial combustion turbine. The	Good combustion practices and the use of pipeline quality natural gas,								'	1
MI-0427	FILER CITY STATION	11/17/201	unfired HRSG)	Natural gas	1934.	MMBTU/H	turbine operates in combined-evele with an unfired heat recovery steam generator (HRSG). Two (2) combined-cycle natural gas-fired combustion turbine generators, each with a heat	combustion inlet air filter.	0.002	5 LB/MMBTU						0	
							Two (2) combined-cycle natural gas-fired combustion turbine generators, each with a heat recovery steam generator (CTGHRSG).										
																'	1
			FGCTGHRSG (EUCTGHRSG1				Plant nominal 1,150 MW electricity production. Turbines are each rated at 3,658 MMBTU/H and HRSG duct burners are each rated at 800 MMBTU/H.	Conditional and in the single state of						HOURLY; EACH	,	'	1
	BELLE RIVER COMBINED		&				and HRSG duct burners are each rated at 800 MMB I U/H.	Good combustion practices, inlet air conditioning, and the use of pipeline			HOURLY; EACH			UNIT W/O DUCT		'	1
*MI-0435	CYCLE POWER PLANT	7/16/2013	EUCTGHRSG2)	Natural gas)	The HRSGs are not capable of operating independently from the CTGs.	quality natural gas.	1	6 LB/H	UNIT	12.2	LB/H	BURNER FIRING	i	0	
			Combined Cycle								AV OF THREE					'	1
			Combustion Turbine	2							ONE H STACK					'	1
NJ-0085	MIDDLESEX ENERGY CENTER, LLC	7/10/2014	firing Natural Gas with Duct Burner	natural gas	400	h 6		USE OF NATURAL GAS A CLEAN BURNING FUEL	10	4 I B/H	TESTS EVERY 5	Ι,				,	1
NJ-0083	CENTER, LLC	//19/2010	with Duct Burner	naturai gas	400	n yr		CLEAN BURNING FUEL	10.	+ LD/II	I K	<u> </u>				1	
			Combined Cycle								AV OF THREE					'	1
1			Combined Cycle Combustion Turbine			1			1		ONE H STACK			1		1	1
1	MIDDLESEX ENERGY		firing Natural Gas			1		USE OF NATURAL GAS A	1		TESTS EVERY 5			1		1	1
NJ-0085	CENTER, LLC	7/19/2010	without Duct Burner	r Natural Gas	804	H/YR		CLEAN BURNING FUEL	4.	4 LB/H	YR	+		+	1	3	
			Combustion turbine											1		'	1
	CPV FAIRVIEW ENERGY		and HRSG without				Emission limits are for each turbine fueled by NG and operating without duct burner being	Low sulfur fuels and good								'	1
*PA-0310	CENTER CHOCOLATE BAYOU	9/2/2010	duct burner NG only	y Natural gas	-	1	fired and do not include startup/shutdown emissions.	combustion practices	0.006	8 LB/MMBTU	+	+ '		+	1	4	
	STEAM GENERATING		Combined Cycle	NATURAL												'	1
TX-0817	(CBSG) STATION MONTGOMERY COUNTY	2/17/201	Cogeneration	GAS NATURAL	51	MW	2 UNITS EACH 50 MW GE LM6000	PIPELINE NATURAL GAS, GOOI	6.9	8 LB/H						3	
*TX-0834	POWER STATIOIN	3/30/2013	Combined Cycle Turbine	GAS	263:	MMBTU/HR/UNIT	Two Mitsubishi M501GAC turbines (without fast start)	COMBUSTION	125.	7 TON/YR						0	1
			Four combined								AVE OVER						
*CO-0073	PUEBLO AIRPORT GENERATING STATION	7/22/2010	cycle combution turbines	natural gas	37	mmbtu/hr	Three GE, LMS6000 PF, natural gas-fired, combined cycle CTG, rated at 373 MMBtu per hour each, based on HHV and one (1) HRSG each with no Duct Burners	Use of pipeline quality natural gas and good combustor design	4	3 llb/hr	STACK TEST LENGTH						1
			Electric Generation				Two combined cycle combustion turbines followed by HRSGs with capability for supplemental	una good companos design	1	7 10111	HOURLY	T (1	
*IL-0112	NELSON ENERGY CENTER	12/28/2010	Facility	Natural Gas	22	MW each	fuel firing in HRSG for each combustion turbine using duct burners. EACH TURBINE IS EQUIPED WITH DRY LOW NOX BURNERS, NATURAL GAS		0.01	2 LB/MMBTU	AVERAGE	-				3	─
			FOUR (4)				FIRED DUCT BURNERS, AND A HEAT RECOVERY STEAM GENERATOR									'	1
1			NATURAL GAS				IDENTIFIED AS HRSG#. NOX EMISSIONS CONTROLLED BY SELECTIVE									1 '	1
			COMBINED CYCLE				CATALYTIC REDUCTION SYSTEMS (SCR##) ALONG WITH CO AND VOC EMISSSIONS CONTROLLED BY OXIDATION CATAYLST SYSTEMS (CAT##) IN									'	1
	ST. JOSEPH ENEGRY		COMBUSTION	NATURAL			EACH TURBINE. EACH STACK HAS CONTINUOUS EMISSIONS MONITORS FOR	GOOD CUMBUSTION PRACTICE								'	1
*IN-0158	CENTER, LLC	12/3/2013	TURBINES	GAS	230	MMBTU/H	NOX AND CO. COMBINED NOMIAL POWER OUTPUT IS 1.350 MW. TWO GENERAL ELECTRIC (GE) F-CLASS ADVANCED COMBINED CYCLE	AND FUEL SPECIFICATION	1	8 lb/hr	3 HOURS	0.0078	LB/MMBTU	3 HOURS		3	
			2 COMBINED-				COMBUSTION TURBINES (CTS) WITH A NOMINAL GENERATING CAPACITY OF	USE OF PIPELINE-QUALITY								'	1
			CYCLE				725 MW, COUPLED WITH A HEAT RECOVERY STEAM GENERATOR (HRSG)	NATURAL GAS EXCLUSIVELY			AVERAGE OF					'	1
*MD-0041	CPV ST. CHARLES	4/23/2014	COMBUSTION	NATURAL	72	MEGAWATT	EQUIPPED WITH DUCT BURNERS, DRY LOW-NOX BURNERS, SCR, OXIDATION CATALYST	AND GOOD COMBUSTION PRACTICE	0.01	1 LB/MMBTU	THREE STACK TEST RUNS						1
			2 COMBINED													1	
			CYCLE COMBUSTION													'	1
			TURBINES,					EXCLUSIVE USE OF PIPELINE								'	1
l	WILDCAT POINT		WITHOUT DUCT	NATURAL				QUALITY NATURAL GAS AND			3-HOUR BLOCK	l .					1
*MD-0042	GENERATION FACILITY	4/8/2014	FIRING 2 COMBINED	GAS	27/	MW		EFFICIENT TURBINE DESIGN	1	5 lb/hr	AVERAGE	+ (+		3	-
			CYCLE						1		1			1		1	1
1			COMBUSTION TURBINES,					EXCLUSIVE USE OF PIPELINE	1		AVERAGE OF 3			1		1	1
	WILDCAT POINT		WITHOUT DUCT	NATURAL				QUALITY NATURAL GAS AND			STACK TEST			1		1	1
*MD-0042	GENERATION FACILITY	4/8/2014	FIRING 2 COMBINED	GAS	27	MW		EFFICIENT TURBINE DESIGN	25.	l lb/hr	RUNS	1		+		9	
1			CYCLE											1		1	1
1			COMBUSTION TURBINES.					EXCLUSIVE USE OF PIPELINE	1		AVERAGE OF 3			1		1	1
1	WILDCAT POINT		WITHOUT DUCT	NATURAL				QUALITY NATURAL GAS AND			STACK TEST			1		1	1
*MD-0042	GENERATION FACILITY	4/8/201	FIRING	GAS	27	MW		EFFICIENT TURBINE DESIGN	25.	l lb/hr	RUNS	1				0	
1			Combined cycle				This is a combined-cycle combustion turbine with a non-fired heat recovery steam generator (HRSG)		1		1			1		1	1
			combustion turbine				()		1		1			1		1	1
*MI-0402	SUMPTER POWER PLANT	11/17/201	w/ HRSG	Natural gas	130	MW electrical output	Natural gas-fired combustion turbine conversion to combined-cycle. This is a combined-cycle combustion turbine with a non-fired heat recovery steam generator		0.006	6 LB/MMBTU	TEST	7.4	lb/hr	TEST	-	0	
			Combined cycle				This is a combined-cycle combustion turbine with a non-fired heat recovery steam generator (HRSG).							1		1	1
l			combustion turbine	L		l			1 .		L		L			.]	1
*MI-0402	SUMPTER POWER PLANT	11/17/201	w/ HRSG	Natural gas	130	MW electrical output	Natural gas-fired combustion turbine conversion to combined-cycle. Throughput is 2,237 MMBTU/H for each CTG		0.006	6 LB/MMBTU	TEST	7.4	lb/hr	TEST		1	
														1		1	1
			Natural gas fueled combined cycle				Equipment is permitted as following flexible group (FG): FG-CTG1-2: Two natural gas fired CTGs with each turbine containing a heat recovery steam							1		1 '	1
			combined cycle combustion turbine				generator (HRSG) to operate in combined cycle. The two CTGs (with HRSG) are connected				EACH CTG;			EACH CTG;		1	1
l	MIDLAND COGENERATION	1	generators (CTG)	L.		l	to one steam turbine generator. Each CTG is equipped with a dry low NOx (DLN) burner and a	L	1	.l	TEST		L	TEST		. '	1
*MI-0405	VENTURE	4/23/201	with HRSG	Natural gas	223	MMBTU/H	selective catalytic reduction (SCR) system. Throughput is 2,237 MMBTU/H for each CTG	Good combustion practices	0.00	6 LB/MMBTU	PROTOCOL	0.012	LB/MMBTU	PROTOCOL)	
														1		'	1
			Natural gas fueled				Equipment is permitted as following flexible group (FG):							1		1	1
1			combined cycle combustion turbine				FG-CTG1-2: Two natural gas fired CTGs with each turbine containing a heat recovery steam generator (HRSG) to operate in combined cycle. The two CTGs (with HRSG) are connected				EACH CTG:			EACH CTG:		1	1
	MIDLAND COGENERATION		generators (CTG)				to one steam turbine generator. Each CTG is equpped with a dry low NOx (DLN) burner and a				TEST			TEST		1 '	1
°MI-0405	VENTURE	4/23/201	with HRSG	Natural gas	223	MMBTU/H	selective catalytic reduction (SCR) system.	Good combustion practices	0.00	6 LB/MMBTU	PROTOCOL	0.012	LB/MMBTU	PROTOCOL		اه	

		PERMIT ISSUANCE		PRIMARY	1	1		CONTROL METHOD	EMISSION		AVG TIME	EMISSION		AVG TIME	STANDARAD	I	AVG TIME
RBLCID	FACILITY NAME	DATE	PROCESS NAME	FUEL	THROUGHPUT	THROUGHPUT UNIT	PROCESS NOTES Natural gas fired CTG with DB for HKSG: 4 total.	DESCRIPTION	LIMIT 1	UNIT	CONDITION	LIMIT 2	UNIT	CONDITION	EMISSION LIMIT	UNIT	CONDITION
							Natural gas fired CTG with DB for HRSG; 4 total. Technology A (4 total) is 2587 MMBTU/H design heat input each CTG. Technology B (4 total) is 2688 MMBTU/H design heat input each CTG.										
							Permit was issued for either of two F Class turbine technologies with slight variations in emission rates. Applicant will select one technology. Installation is two separate CTG/HRSG				TEST						
	THETFORD GENERATING		FGCCA or FGCCB- 4 nat. gas fired CTG			MMBTU/H heat input,	emission rates. Applicant will select one technology, installation is two sparate CTOTHESO trains driving one steam turbine electrical generator; Two 2XI Blocks. Each CTG will be rated at 211 to 230 MW (gross) output and the station nominal generating capacity will be up	Combustion air filters; efficient combustion control; low sulfur			PROTOCOL; (3 1- H TESTS IF						
*MI-0410	STATION	7/25/2013	w/ DB for HRSG	natural gas	258	7 each CTG	to 1,400 MW. Natural gas fired CTG with DB for HRSG; 4 total.	natural gas fuel.	0.003	LB/MMBTU	POSSIBLE)		0		(
							Technology A (4 total) is 2587 MMBTU/H design heat input each CTG.										
							Technology B (4 total) is 2688 MMBTU/H design heat input each CTG.										
			FGCCA or FGCCB-	_			Permit was issued for either of two F Class turbine technologies with slight variations in emission rates. Applicant will select one technology. Installation is two separate CTG/HRSG trains driving one steam turbine electrical generator; Two 2XI Blocks. Each CTG will be	Combustion air filters; efficient			TEST PROTOCOL (3 1-						
*MI-0410	THETFORD GENERATING STATION	7/25/2013	4 nat. gas fired CTG w/ DB for HRSG	natural gas	255	MMBTU/H heat input, 7 each CTG	rated at 211 to 230 MW (gross) output and the station nominal generating capacity will be up	combustion control; low sulfur natural gas fuel.	0.006	6 LB/MMBTU	H TESTS IF POSSIBLE)		0		١ ,		
-NII-0410	STATION	7/23/2013	W DB for fixed	naturai gas	238	/ each CTG	to 1,400 MW. Natural gas fired CTG with DB for HRSG; 4 total.	naturai gas iuci.	0.006	LD/MMD1U	POSSIBLE)		0		,		
							Technology A (4 total) is 2587 MMBTU/H design heat input each CTG.										
							Technology B (4 total) is 2688 MMBTU/H design heat input each CTG.										
							Permit was issued for either of two F Class turbine technologies with slight variations in emission rates. Applicant will select one technology. Installation is two separate CTG/HRSG				TEST						
	THETFORD GENERATING		FGCCA or FGCCB- 4 nat. gas fired CTG	 }		MMBTU/H heat input,	trains driving one steam turbine electrical generator; Two 2X1 Blocks. Each CTG will be rated at 211 to 230 MW (gross) output and the station nominal generating capacity will be up	Combustion air filters, efficient combustion control, low sulfur			PROTOCOL (3 1- H TESTS IF						
*MI-0410	STATION	7/25/2013	w/ DB for HRSG	natural gas	258	7 each CTG	to 1,400 MW. Natural Gas Usage <= 33,691 MMft ² /yr	natural gas fuel.	0.006	6 LB/MMBTU	POSSIBLE)		0		(
	PSEG FOSSIL LLC		Combined Cycle Combustion Turbine	,			per 365 consecutive day period, rolling one day basis (per two turbines and two duct				AVERAGE OF						
*NJ-0081	SEWAREN GENERATING STATION	3/7/2014	-Siemens turbine without Duct Burner	Notural and	3266	1 MMCubic ft/yr	The heat input rate of each Siemens combustion turbine will be 2,356 MMBtu/hr(HHV)	USE OF NATURAL GAS A CLEAN BURNING FUEL		3 lb/hr	THREE ONE HOUR TESTS						
10-0081	STATION	3///2014	CYCLE	I Ivaturai gas	3303	i janarcubic it yi	The fieat input rate of each stelliers compassion turbine with be 2,350 sinvibiani (11117)	CLEAN BORNENG FOLE	1	J IONIA	HOUR ILSIS				,		
			COMBUSTION				Natural Gas Usage <= 33,691 MMft ^{^3} /yr										
			TURBINE WITHOUT DUCT				per 365 consecutive day period, rolling one day basis (per two turbines and two duct										
	PSEG FOSSIL LLC SEWAREN GENERATING		BURNER - GENERAL				burners) The heat input rate of each General Electric combustion turbine will be 2,312	Use of Natural Gas as a clean burning	g		AVERAGE OF THREE ONE						
*NJ-0081	STATION	3/7/2014	4 ELECTRIC	Natural Gas	3369	1 MMCF/YR	MMBtu/hr(HHV) Four GE 7FA combined cycle turbines, dry low NOx burners and selective catalytic reduction.	fuel	12.	7 lb/hr	HOUR TESTS AVERAGE OF		0				
	WEST DEPTEODD EVENSY		Combined Cycle				These limits are for each of the 4 turbines individually, while operating with the duct burners				THREE ONE						
*NJ-0082	WEST DEPTFORD ENERGY STATION	7/18/2014	Combustion Turbine without Duct Burner	r Natural Gas	2028	2 MMCF/YR	on. This permit is a modification to RBLC OH-0252 to remove hourly restrictions on duct burners. Two Mitsubishi 2932 MMBtuH combined cycle combustion turbines, both with 300	Use of natural gas a clean burning fuel	1	0 lb/hr	HOUR STACK TESTS		0				
			2 Combined Cycle				MMBtu/H duct burners, with dry low NOx combustors, SCR, and catalytic oxidizer. Will										
	OREGON CLEAN ENERGY		Combustion Turbines-Siemens,			MMSCF/rolling 12-	install either 2 Siemens or 2Mitsubishi, not both (not determined). Short term limits are different with and without duct burners.							PER ROLLING 12			
*OH-0352	CENTER	6/18/2013	without duct burners	Natural Gas	51560	0 months	This process without duct burners.	clean burning fuel, only natural gas	13.	3 lb/hr		61.	3 T/YR	MONTHS			
			2 Combined Cycle Combustion				Two Mitsubishi 2932 MMBtu/H combined cycle combustion turbines, both with 300 MMBtu/H duct burners, with dry low NOx combustors, SCR, and catalytic oxidizer. Will install either 2 Siemens or 2 Mitsubishi not both (not determined)										
	OREGON CLEAN ENERGY		Turbines-Mitsubishi,	,			Short term limits are different with and without duet hurners							PER ROLLING 12	-		
*OH-0352	CENTER	6/18/2013	without duct burners		4791	7 MMSCF/rolling 12-MO	This process without duct burners. Four GE 7FA combined cycle turbines, dry low NOx burners and selective catalytic reduction.	clean burning fuel, only natural gas	11.	3 lb/hr		44.	2 T/YR	MONTHS			
	DUKE ENERGY HANGING		Turbines (4) (model GE 7FA) Duct	NATURAL			These limits are for each of the 4 turbines individually, while operating with the duct burners off. This permit is a modification to RBLC OH-0252 to remove hourly restrictions on duct	Burning natural gas in an efficient						PER ROLLING 12			
*OH-0356	ROCK ENERGY MOXIE ENERGY	12/18/2012	2 Burners Off Combined Cycle	GAS	15	2 MW	burners.	combustion turbine	1:	5 lb/hr		87.	2 T/YR	MONTHS			
*PA-0286	LLC/PATRIOT GENERATION PLT	1/31/2013	Power Blocks 472 MW - (2)	Natural Gas		0	Two natural-gas-fired combined cycle powerblocks where each powerblock consists of a combustion turbine and heat recovery steam generator with duet burner. The Permittee shall select and install any of the turbine options listed below (or newer versions		0.005	7 LB/MMBTU		5	4 T/YR	TOTAL PM			
							The retrinited shall select and install any of the furtine opions issed below (or newer versions of these turbines if the Department determines that such newer versions achieve equivalent or better emissions rates										
							and exhaust parameters) 1. General Electric 7FA (GE 7FA)										
			COMBINED				Siemens SGT6-5000F (Siemens F) Mitsubishi M501G (Mitsubishi G)										INCLUDING
*PA-0291	HICKORY RUN ENERGY STATION	4/23/2013	CYCLE UNITS #1 and #2	Natural Gas	1	4 MMCF/HR	Siemens SGT6-8000H (Siemens H) The emissions listed are for the Siemens SGT6-8000H unit.		18	lb/hr W/ DUCT BURNER		l ,	l lb/hr WITHOUT		62.89	T/YR 12-MONTH ROLLIN	STARTUP AND SHUTDOWN
171-0271	BERKS HOLLOW ENERGY	41231201	Turbine, Combined	Tuturu Cus		- Inner inc	The chassos face are for the stellars series of the country and		10.	DOMINER	12-MONTH ROLLING		I III WILLIOUT		02.07	ROLLIN	JAIO I DO III.
*PA-0296	ASSOC LLC/ONTELAUNEE	12/17/2013	Turbine, Combined Cycle, #1 and #2	Natural Gas	304	6 MMBtu/hr	Equipped with SCR and Oxidation Catalyst		48.5	5 TPY	TOTAL	1	0 lb/hr				
	BERKS HOLLOW ENERGY		Turbine, Combined								12-MONTH ROLLING						
*PA-0296	ASSOC LLC/ONTELAUNEE FGE TEXAS POWER I AND	12/17/2013	3 Cycle, #1 and #2	Natural Gas		6 MMBtu/hr	Equipped with SCR and Oxidation Catalyst Four (4) Alstorn GT24 CTGs, each with a HRSG and DBs, max design capacity 409	Low sulfur fuel, good combustion	48.50	6 TPY	TOTAL		0		(
*TX-0660	FGE TEXAS POWER II	3/24/2014	4 Alstom Turbine	Natural Gas	230	7 MW	MMBtu/hr	practices	+	PPMVD			0				
*TX-0678	FREEPORT LNG PRETREATMENT FACILITY	7/16/2014	4 Combustion Turbine	natural gas	8	7 MW	The exhaust heat from the turbine will be used to heat a heating medium which is used to regenerate rich amine from the acid gas removal system.		15.2	2 lb/hr			0				
*TX-0689	CEDAR BAYOU ELECTRIC GENERATION STATION	8/29/2014	Combined cycle natural gas turbines	Natural Gas	22	5 MW		Good combustion practices, natural] .						,		
*TX-0698	BAYPORT COMPLEX		(4) cogeneration turbines	natural gas		0 MW	(4) GE 7EA turbines providing power and process steam			0			0				
13.0030	SAND HILL ENERGY	9/3/201	Natural gas-fired combined cycle		1		TOTALING POTES MAN PROCESS ACCUSE										
*TX-0709	CENTER CENTER	9/13/2013	turbines	Natural Gas	173	9 MW			1	0			0				
	TRINIDAD GENERATING		combined cycle				The facility will consist of a Mitsubishi Heavy Industries (MHI) J model gas fired combustion turbine nominally rated at 497 megawatts (MW) equipped with a HRSG and DB with a maximum design capacity of 402 million British thermal units per hour (MMBuuhr). The										
*TX-0712	FACILITY	11/20/2014	turbine Combined-cycle gas	natural gas	49	7 MW	gross nominal output of the CTG with HRSG and DB is 530 MW.		+ '	0	-		0	1			
*TV 0730	COLORADO BEND ENERGY CENTER		turbine electric			o MW	combined cycle power plant that uses two combustion turbines and one steam turbine, model GE 7HA.02	afficient combustion, natural 6		3 lb/hr							
*TX-0730	CENTER	4/1/2015	generating facility	natural gas	110	0 MW	UE /IIA.02	efficient combustion, natural gas fuel	1 4	o juo/nr			VI.			1	

		PERMIT ISSUANCE		IPRIMARY			invenergy, EEC - Anegheny County Energy	CONTROL METHOD	IFMISSION		LAVC TIME	IEMISSION		LAVCTIME	ISTANDARAD		IAVG TIME
RBLCID	FACILITY NAME	DATE	PROCESS NAME		THROUGHPUT	THROUGHPUT UNIT PI	ROCESS NOTES	DESCRIPTION	LIMIT 1	UNIT	CONDITION	LIMIT 2	UNIT	CONDITION	EMISSION LIMIT	UNIT	CONDITION
*TX-0730	COLORADO BEND ENERGY CENTER	4/1/2015	Combined-cycle ga turbine electric generating facility	natural gas	1100	MW G	ombined cycle power plant that uses two combustion turbines and one steam turbine, model iE 7HA.02	efficient combustion, natural gas fuel	4	3 lb/hr							
	EAGLE MOUNTAIN STEAM		Combined Cycle Turbines (>25 MW) – natural			Tv Si	wo power configuration options authorized iemens âc* 231 MW + 500 million British thermal units per hour (MMBtwhr) duct burner										
*TX-0751	ELECTRIC STATION	6/18/2015	gas Combined Cycle	natural gas	210	Tv	IE ‰ 210 MW + 349.2 MMBtu/hr duct burner wo power configuration options authorized		35.47	7 lb/hr		81.8	T/YR			0	
*TX-0767	LON C. HILL POWER STATION	10/2/2015	COMBUSTION	natural gas	195	MW G	iemens â€" 240 MW + 250 million British thermal units per hour (MMBtu/hr) duct burner iE â€" 195 MW + 670 MMBtu/hr duct burner	Good combustion practices and use of pipeline quality natural gas	16	5 lb/hr	3 H	109.:	TPY	3 H		0	
*VA-0321	BRUNSWICK COUNTY POWER STATION	3/12/2013	TURBINE GENERATORS, (3 COMBUSTION	8) Natural Gas	3442	MMBTU/H (n	hree (3) Mitsubishi M501 GAC combustion turbine generators with HRSG duct burners attural gas-fired).	Low sulfur/carbon fuel and good combustion practices.	0.0033	LB/MMBTU	AVG/WITHOUT DUCT BURNING 3 H	9.	7 lb/hr	AVG/WITHOUT DUCT BURNING 3 H	,	D	
*VA-0321	BRUNSWICK COUNTY POWER STATION INTERNATIONAL STATION		TURBINE GENERATORS, (3 GE LM6000PF-25		1	MMBTU/H (n	hree (3) Mitsubishi M501 GAC combustion turbine generators with HRSG duct burners attural gas-fired).	Low sulfur/carbon fuel and good combustion practices.	1	LB/MMBTU	AVG/WITHOUT DUCT BURNING 3-HOUR AVERAGE	9.	7 lb/hr	AVG/WITHOUT DUCT BURNING		0	
AK-0071	POWER PLANT	12/20/2010	Turbines (4)	Natural Gas	59900	hp ISO To	urbine-duct burner pairs exhaust through common stack	Good Combustion Practices Combustion Turbines EU IDs 5-8 use	0.0066	LB/MMBTU	AVERAGE					D	⊢—
	INTERNATIONAL STATION						U IDs 5-8 Combined Cycle Natural Gas-fired Combustion Turbines rated at 59,900 hp (44.7	combustion Furnines EU IDS 3-8 use good combustion practices involve increasing the residence time and excess oxygen to ensure complete combustion which in turn minimize particulates without an add-on									
AK-0073	POWER PLANT	12/20/2010	Fuel Combustion	Natural Gas	59900		O IDS 3-9 Combined Cycle Natural Gas-fred Combustion Furbines rated at 39,300 np (44.7 fW)	CONTROL TECHNOLOGY. USE PUBLIC UTILITY	0.0066	LB/MMBTU	3-HOUR	-				0	
	BLYTHE ENERGY PROJECT		2 COMBUSTION	NATURAL				COMMISSION QUALITY NATURAL GAS W/ SULFUR CONTENT LESS THAN OR EQUAL TO 0.5 GRAINS PER 100									
CA-1144	П	4/25/2001	TURBINES COMBUSTION TURBINE #2	GAS	170	MW E.	ACH TURBINE WILL PRODUCE 170 MW	SCF		b lb/hr		6	T/YR			D.	
CA-1191	VICTORVILLE 2 HYBRID POWER PROJECT	3/11/2010	(NORMAL OPERATION, NO DUCT BURNING)	NATURAL GAS	154	MW 15	54 MW Combined Cycle Combustion Turbine Generator	PUC QUALITY NATURAL GAS	10	2 lb/hr	PUC QUALITY NATURAL GAS					0	
	VICTORVILLE 2 HYBRID		COMBUSTION TURBINE #1 (NORMAL OPERATION, NO								12-MONTH ROLLING AVG						
CA-1191	POWER PROJECT	3/11/2010	DUCT BURNING COMBUSTION TURBINE #1	Natural Gas	154	MW 15	54 MW Combined Cycle Combustion Turbine Generator	PUC QUALITY NATURAL GAS	10	2 lb/hr	BURNING)		0			0	
CA-1192	AVENAL ENERGY PROJECT	6/21/2011	OPERATION, NO DUCT BURNING	NATURAL GAS	180	MW		USE PUC QUALITY NATURAL GAS	8.91	l lb/hr	12-MONTH ROLLING AVG					0	
			COMBUSTION TURBINE #2 (NORMAL														
CA-1192	AVENAL ENERGY PROJECT	6/21/2011	OPERATION, NO DUCT BURNING	GAS GAS	180	MW		USE PUC QUALITY NATURAL GAS USE PIPELINE QUALITY NATURAL GAS, OPERATE DUCT	8.91	lb/hr	12-MONTH ROLLING AVG	-)			D	
CA-1198	MORRO BAY POWER PLANT	9/25/2008	COMBUSTION TURBINE GENERATOR	NATURAL GAS	180	MW		BURNERS NO MORE THAN 4000 HRS PER YEAR (12-MONTH ROLLING AVG BASIS)		l lb/hr	6-HR ROLLING AVG (NO DUCT BURNING)	13.:	lb/hr	6-HR ROLLING AVG (W/ DUCT BURNING)		D	
CA-1211	COLUSA GENERATING STATION	2/11/2011	COMBUSTION TURBINES (NORMAL OPERATION)	NATURAL GAS	122		WO (2) NATURAL GAS FIRED TURBINES AT 172 MW EACH. BOTH TURBINES QUIPPED WITH A 688 MMBTU/HR DUCT BURNER AND HRSG.	USE NATURAL GAS	12.4	i llb/hr	STACK TEST						
	PALMDALE HYBRID		COMBUSTION TURBINES (NORMAL	NATURAL		T'A'G	WO NATURAL GAS-FIRED COMBUSTION TURBINE-GENERATORS (CTGS) RATED IT 154 MEGAWATT (MW, GROSS) EACH, TWO HEAT RECOVERY STEAM SENERATORS (HRSG), ONE STEAM TURBINE GENERATOR (STG) RATED AT 267 IW, AND 251 ACRES OF PARABOLIC SOLAR-THERMAL COLLECTORS WITH	USE PUC QUALITY NATURAL			9-HR AVG (NO	,	,	9-HR AVG (W/	,		
CA-1212	POWER PROJECT	10/18/2011	OPERATION) NATURAL-GAS FIRED,	GAS	154		SSOCIATED HEAT-TRANSFER EQUIPMENT	GAS NATURAL GAS QUALITY FUEL		LB/MMBTU	DUCT BURNING	0.004	LB/MMBTU	DUCT BURNING		0	
CO-0056	ROCKY MOUNTAIN ENERGY CENTER, LLC	5/2/2006	COMBINED- CYCLE TURBINE SIEMENS SGT6-	NATURAL GAS	300		INE NEW COMBINED-CYCLE TURBINE IS BEING ADDED TO AN EXISTING ACILITY.	ONLY AND GOOD COMBUSTION CONTROL PRACTICES.		LB/MMBTU		10	% OPACITY			D	
			5000F COMBUSTION TURBINE #1 AND				HROUGHPUT IS FOR TURBINE ONLY WHEN FIRING NATURAL GAS										
	KLEEN ENERGY SYSTEMS,		#2 (NATURAL GAS FIRED) WITH 445 MMBTU/HR NATURAL GAS	NATURAL		D	URBINE: 2136 MMBTU/HR (2.095 MMCF/HR) UCT BURNER: 445 MMBTU/HR (0.436 MMCF/HR) MISSION RATES ARE FOR EACH COMBUSTION TURBINE FIRING NATURAL GAS,				W/OUT DUCT			W/ DUCT			
CT-0151	LLC	2/25/2008	DUCT BURNER	GAS	2.1	MMCF/H N	OT COMBINED. 117 MMBTU/HR FUEL OIL.		11	l lb/hr	BURNER	15.:	lb/hr	BURNER		0	
	FPL WEST COUNTY		COMBINED CYCLE COMBUSTION GAS TURBINES -	NATURAL		W TI SS G M TI	ACH COMBINED CYCLE UNIT SYSTEM (TWO & kalpuc, & kalpuc, Alaque), Alaque, Alaque, Alaque, Alul CONSIST OF THREE NOMINA 2.50 MEGAWAT MODEL 5016 (EAU RUBENE-ELECTRICAL GENERATOR SETS WITH EVAPORATIVE INLET COOLING YSTEMS, THREE SUPPLEMENTARY-PIERD HEAT RECOVERY STEAM, STEMS SUPPLEMENTARY-PIERD HEAT RECOVERY STEAM, SENSEM STEMS AL STEMS A										
FL-0286 FL-0303	FPL WEST COUNTY ENERGY CENTER UNIT 3		THREE NOMINAL 250 MW CTG (EACH) WITH SUPPLEMENTAR			CO CO IN ST RI	TEAM-ELECTRICAL GENERATOR. UCHLEAT NPUT EATE (LHY) OIL2,117 MMBTUH OMBINED CYCLE UNIT 3 WILL CONSIST OF: THREE NOMINAL 250 MW OMBUSTION TURBEN-ELECTRICAL GENERATORS (CTG) WITH EVAPORATIVE NLET COOLING SYSTEMS: THREE SUPPLEMENTARY-FIRED HEAT RECOVERY TEAM GENERATORS (HRSG) WITH SELECTIVE CALATUTE REDUCTION (SCR) EACTORS AND A COMMON NOMINAL 500 MW STEAM-ELECTRICAL ENFERATOR.			2 GR/100 SCF GAS		0.001:	PERCENT (FUEL	L		0	
12-0303	CANE ISLAND POWER	7/30/2008	300 MW COMBINED CYCLE COMBUSTION	NATURAL	2333	MINIDIUM G	LEVERATOR.	FUEL SPECIFICATIONS : 2 GR		GR S/100 SCF GAS		0.001	(OL)		'		
FL-0304	PARK	9/8/2008	TURBINE	GAS	1860	MMBTU/H		S/100 SCF OF GAS	:	GAS		10	OPACITY			D	

	I	IPERMIT ISSUANCE	I	IPRIMARY		I	I	CONTROL METHOD	IEMISSION	1	IAVG TIME	TEMISSION		IAVG TIME	ISTANDARAD		AVG TIME
RBLCID	FACILITY NAME	DATE	PROCESS NAME	FUEL	THROUGHPUT	THROUGHPUT UNIT		DESCRIPTION	LIMIT 1	UNIT	CONDITION	LIMIT 2	UNIT	CONDITION	EMISSION LIMIT	UNIT	CONDITION
							Basis for the emission standard is either NSPS Subpart KKKK or Department BACT										
							determinations. The BACT emission standards for NOX while operating in combined cycle are more stringent										
			Combine cycle				than the corresponding Subpart KKKK emissions standards of 15 and 42 ppmvd @15% O2 on			GR S/100 SCF OF							
FL-0337	POLK POWER STATION	10/14/2012	power block (4 on 1) natural gas	1160	MW	a 30-day rolling average for natural gas and fuel oil, respectively.	work practices USE OF CLEAN BURNING FUEL		2 GAS		0.001:	S FUEL OIL			4	
			GAS TURBINES -					USE OF CLEAN BURNING FUEL AND GOOD COMBUSTION			HOURLY			ANNUAL			NOT
LA-0192	CRESCENT CITY POWER	6/6/200	187 MW (2)		2006	MMBTU/H		PRACTICES WHILE FIRING NATURAL GAS:	29.	4 lb/hr	MAXIMUM	128	T/YR	MAXIMUM)	AVAILABLE
			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					WHILE FIRING NATURAL GAS:									
								USE OF PIPELINE QUALITY NATURAL GAS AND GOOD									
								COMBUSTION PRACTICES									
			COMBINED														
			CYCLE TURBINE				TURBINES ALSO PERMITTED TO BURN NO. 2 FUEL OIL AND ULTRA LOW SULFUR	WHILE FIRING FUEL OIL: USE									
	NINEMILE POINT ELECTRIC GENERATING		GENERATORS (UNITS 6A & amp;	NATURAL			DIESEL.	OF ULTRA LOW SULFUR FUEL OIL AND GOOD COMBUSTION			HOURLY AVERAGE W/O			HOURLY AVERAGE W/			
LA-0254	PLANT	8/16/2011	(UNITS 6A & amp;	GAS	7146	MMBTU/H	FUEL OIL USE IS LIMITED TO 1000 HOURS PER YEAR.	PRACTICES	26.2	3 lb/hr	DUCT BURNER	33.10	lb/hr	DUCT BURNER		,	
			COGENERATION				EACH COGEN TRAIN CONSISTS OF A 50 MW GE LM6000 PF SPRINT TURBINE AND A HEAT RECOVERY STEAM GENERATOR EQUIPPED WITH A 70 MM BTU/HR	USE OF NATURAL GAS AS FUEL	-		1				1		
LA-0256	COCENTED LETON DE LATE	12// 2011	TRAINS 1-3 (1-10,	NATURAL		NO CONTURY	A HEAT RECOVERY STEAM GENERATOR EQUIPPED WITH A 70 MM BTU/HR DUCT BURNER	AND GOOD COMBUSTION PRACTICES	2.7	llb/br	HOURLY MAXIMUM	I .					
LA-0256	COGENERATION PLANT	12/6/201	2-10, 3-10) Combined Cycle	GAS	4/3	MMBTU/H	DUCT BURNER.	PRACTICES	3./.	2 lib/hr	MAXIMUM	 	,		+'	+	
			Refrigeration														
	SABINE PASS LNG		Compressor					Good combustion practices and			HOURLY						
LA-0257	TERMINAL	12/6/2011	Turbines (8)	natural gas	286	MMBTU/H	GE LM2500+G4 Each of these units have a natural gas-fired heat recovery	fueled by natural gas	2.00	8 lb/hr	MAXIMUM	1)		+		
							steam generator and a natural gas-fired duct burner. Each										
							CT combusts natural gas as the primary fuel and very low-										
I			TURDAN	1			sulfur No. 2 fuel oil as a backup fuel. The use of fuel			1							
I			TURBINE, COMBINED	1			oil is limited to 1,200 hours per year and only during the months of November through March, and is listed as a	USE OF ONLY CLEAN-BURNING	.	1							
I			CYCLE,	1			separate process. These units are listed	LOW-SULFUR		1							
I			NATURAL GAS,	NATURAL	1	1	as a combined source (all three units) for each type of	FUELS AND GOOD		1	based on 3-hour	1	1			1	1
NC-0101	FORSYTH ENERGY PLANT	9/29/2005	(3)	GAS	1844.3	MMBTU/H	fuel.	COMBUSTION PRACTICES. CLEAN FUELS - NATURAL GAS	0.01	LB/MMBTU	average	+	4	+	+	4	-
			TURBINE					AND ULTRA LOW SULFUR									
I			COMBINED	NATURAL	1	1		(15PPM SULFUR) DISTILLATE		1		1	1			1	1
NJ-0074	WEST DEPTFORD ENERGY	5/6/2009	CYCLE	GAS	17298	MMFT3/YR		OIL	18.6	6 lb/hr		1			4	4	
NY-0095	CAITHNES BELLPORT ENERGY CENTER	£/10/200	COMBUSTION TURBINE	NATURAL GAS		MMBUT/H	COMBINED CYCLE WITH DUCT FIRING UP TO 494 MMBTU/H	TOW CHI FUR FUEL	0.005	LB/MMBTU	NO DUCT BURNING	0.000	LB/MMBTU	W/DUCT BURNING		J	1
NY-0095	ENERGY CENTER	5/10/2006	LUKBINE	UAS	2221	MMBU1/H	COMBINED CYCLE WITH DUCT FIRING UP TO 494 MMBTU/H	LOW SULFUR FUEL USE OF LOW ASH FUEL	0.005	LB/MMBTU	DUKNING	0.006	LB/MMBTU	BURNING	+		1
	PSO SOUTHWESTERN		GAS-FIRED					(NATURAL GAS) AND									
OK-0117	POWER PLT	2/9/2007	TURBINES					EFFICIENT COMBUSTION	0.009	LB/MMBTU						,	
			CYCLE														
			COGENERATION	NATURAL													
OK-0129	CHOUTEAU POWER PLANT	1/23/2009	>25MW COMBINED	GAS	1882	MMBTU/H	SIEMENS V84.3A	NATURAL GAS FUEL	6.5	9 lb/hr	3-H AVG	0.003:	LB/MMBTU	24-H AVG)	
			COMBINED														
			CYCLE NATURAL GAS-FIRED	-													
			ELECTRIC														
			GENERATING	NATURAL													
OR-0048	CARTY PLANT CITY PUBLIC SERVICE JK	12/29/2010	SPRUCE POWER	GAS	2866	MMBTU/H		CLEAN FUEL	2.:	5 LB/MMCF		-				4	
	SPRUCE ELECTRICE		GENERATOR														
TX-0516	GENERATING UNIT 2	12/28/2005	UNIT NO 2						26-	4 lb/hr		52:	T/YR		1	ار	
							The plant will be designed to generate 1,350 nominal megawatts of power. There are two										
							configuration scenarios: either four Siemens SGT6-5000F CTGs in combined-cycle mode (Scenario A) or four GE Frame 7FA CTGs in combined cycle mode (Scenario B). Scenario B	use of low ash fuel (natural gas or low									
TX-0590	KING POWER STATION	8/5/2010	Turbine	natural gas	1350	MW	(Scenario A) or four GE Frame /FA C TGs in combined cycle mode (Scenario B). Scenario B	use of low ash fuel (natural gas or low sulfur diesel as a backup)	W 11	l llb/br		19:	lb/br			,	
130 0370	ALIGIO WER DIVINO	0.0.2010	T di bine	maturur gus	1330		also includes one or two auxiliary boilers. (2) GE7FA at 195 MW each,	saira areser as a backup)	1			12.0	7,107.11		—		
							(1) steam turbine at 200 MW.										
TX-0600	THOMAS C. FERGUSON POWER PLANT	0/1/2011	Natural gas-fired turbines	natural gas	200	MW	Each turbine is equipped with an unfired heat recovery steam generator (HRSG), which	-ittt	33.4	11.4.		Ι.	J				
	CHANNEL ENERGY	9/1/2011	Combined Cycle	naturar gas	3,0	ar w	provides steam for the steam turbine. The turbine is a Siemens 501F rated at a nominal 180 MW and the duct burner will have a	pipeline quality natural gas good combustion and the use of	33.4.) IO/III	1-11	· ·	1		+		
TX-0618	CENTER LLC	10/15/2012		natural gas	180	MW	maximum design heat input of 475 MMBtu/hr	gaseous fuel	2	7 lb/hr		1)	
							natural gas-fired combined cycle turbine generator with a heat recovery steam generator										
	DEER PARK ENERGY		Combined Cycle				equipped with a duct burner. The turbine is a Siemens 501F rated at a nominal 180 megawatts and the DB will have a maximum design rate capability of 725 million British thermal units	good combustion and the use of									
TX-0619	CENTER	9/26/2012	Turbine	natural gas	180	MW	per hour	natural gas	2	7 lb/hr		1 .			1	,	
I			1	1	1	1	The three combustion turbine generators (CTG) will be the General Electric 7FA, each with a			1		1	1			1	1
I			Combined cycle gas	. [maximum base-load electric power output of approximately 195 megawatts (MW). The steam turbine is rated at approximately 235 MW. This project also includes the installation of two	good combustion and natural gas as		1							
TX-0620	ES JOSLIN POWER PLANT	9/12/2012	2 turbine	natural gas	195	MW	emergency generators, one fire water pump, and auxiliary equipment. No duct burners.	fuel	1	8 lb/hr	PER TURBINE	<u> </u>	<u> </u>		1	<u> </u>	
			COMBINED								3 HR AVG.			3 HR. AVG.			
I	WARREN COUNTY POWER		CYCLE TURBINE & amp; DUCT	1			Emissions are for one of three units (Mitsubishi natural gas-fired combustion turbine (CT)	Natural Gas only, fuel has maximum		1	(WITHOUT DUCT BURNER			(WITH DUCT BURNER			
VA-0315	PLANT - DOMINION	12/17/2010	BURNER, 3	Natural Gas	2996	MMBTU/H	emissions are for one of three units (Mitsubishi natural gas-fired combustion turbine (C.1) generator, Model M501 GAC).	Natural Gas only, fuel has maximum sulfur content of 0.0003% by weight.	.] .	8 lb/hr	FIRING)	1.	lb/hr	FIRING)		ار	1
	GATEWAY	12.17/2010			2990				1	T	1	†	T	1	1		1
L	COGENERATION 1, LLC -		COMBUSTION	L	1	L	Burns primarily natural gas but has the capacity to burn up to 500 hours of ultra low sulfur	Clean-burning fuels and good		.l	L	1	.[.1	1
VA-0319	SMART WATER PROJECT	8/27/2012	TURBINES, (2)	Natural Gas	593	MMBTU/H	diesel fuel (ULSD) as backup.	combustion practices.	+	5 llb/hr	3 H AVG	1	1	-	+	+	-
I			COMBUSTION	1	1	1				1		1	1			1	1
I			TURBINE & amp;						1	1	1	1					
I	RP CHERRY POINT		HEAT RECOVERY	1	1	1	THREE IDENTICAL CT & HSRG UNITS. EACH CT WILL HAVE AN ANNUAL			1		1	1			1	1
WA-0328	BP CHERRY POINT COGENERATION PROJECT	1/11/2004	STEAM GENERATOR	NATURAL	17/	MW	AVERAGE CAPACITY RATING OF 1614 MMBTU/HR. EACH HRSG DUCT BURNER WILL HAVE A MAXIMUM FIRING RATE OF 105 MMBTU/HR.	LIMIT FUEL TYPE TO NATURAL	1 .			1 .	1			J	*SEE NOTES
	CHEYENNE PRAIRIE		Combined Cycle	GAB.			WILLIAM EARING WITHOUT OF 103 MINIDIOTIK.	Sar Kar	T	1	3-HOUR	!	1	CALENDAR	+ '		SZE NOTES
*WY-0070	GENERATING STATION	8/28/2012	Turbine (EP01)	Natural Gas	40	MW		good combustion practices	1	4 lb/hr	AVERAGE	17.:	TONS	YEAR		4	
								GL . F. I		8 Ib/MMBtu	1-hr average; Duct	12.5		1-hr average; Duc	ı		
	Astoria Energy LLC		Combustion Turbine	Natural Gas	1000	MW		Clean Fuel	0.009	S III/MMBtu	Burners Off	12.9	ID/nr	Burners Off	+		
I	Tenaska Partners LLC		Combustion Turbine	Natural Gas	3147	MMBtu/hr			11.3	8 lb/hr	1	0.003	lb/MMBtu				
	Hawkeye Generating, LLC			Natural Gas	615	MW			0.006	lb/MMBtu		121.7	tpy				
	Liberty Electric Power, LLC		_	_	1954	MMBtu/hr	Without DB		22.	6 lb/hr		_	_	1			
		1		+	1954	MMBtu/hr	With DB		28.	l lb/hr	1			+	+	+	+
	Liberty Electric Power, LLC									1							1
	Liberty Electric Power, LLC Gibson County Generation, LLC		Combustion Turbine	Natural Gas	417	MW			0.004	8 lb/MMBtu	24-hr average						
	Gibson County Generation, LLC York Energy Center Block 1		Combustion Turbine	Natural Gas	417 1574	MW MMBtu/hr			0.004 0.014	B lb/MMBtu l lb/MMBtu	24-hr average hourly basis						
	Gibson County Generation, LLC York Energy Center Block 1 Footprint Power Salem Harbor				1574	MMBtu/hr			0.014	l lb/MMBtu	hourly basis 1-hr average; Duct			1-hr average; Duc	t		
	Gibson County Generation, LLC York Energy Center Block 1		Combustion Turbine	Natural Gas	1574	MW MMBtu/hr MW		Clean Fuel	0.014	8 lb/MMBtu 1 lb/MMBtu 8 lb/hr	hourly basis	0.007	l lb/MMBtu	1-hr average; Duc Burners Off	t		

-		PERMIT ISSUANCE		PRIMARY				CONTROL METHOD	EMISSION		AVG TIME	IEMISSION		AVG TIME	STANDARAD		AVG TIME
DDI CID	EACH PEV NAME				THEOLICHBUT	THEOLICIPUT UNIT	BROCESS NOTES			UNIT			UNIT		EMISSION LIMIT		
RBLCID	FACILITY NAME	DATE	PROCESS NAME	FUEL	THROUGHPUT	THROUGHPUT UNIT	PROCESS NOTES	DESCRIPTION	LIMITI	JUNII	CONDITION	LIMIT 2	UNII	CONDITION	EMISSION LIMIT	UNII	CONDITION
	GenConn Middletown LLC		Combustion Turbine	Natural Gas	474.9	MMBtu/hr				5 lb/hr							
											30-day rolling						
	PacifiCorp Energy		Block 1 CT	Natural Gas					10.8	8 lb/hr	average						
								1			30-day rolling						
	PacifiCorp Energy		Block 2 CT	Natural Gas	629	MW			14	4 lb/hr	average						
								1									
	Pioneer Valley		Combustion Turbine	Natural Gas	387	MW			0.004	4 lb/MMBtu							
			COMBINED														
			CYCLE TURBINE								(W/O DUCT						
	WARREN COUNTY POWER	1	& DUCT				Emissions are for one of three units (Mitsubishi natural gas-fired combustion turbine (CT)	Oxidation catalyst and good			BURNER						
	PLANT - DOMINION		BURNER, 3	Natural Gas	2996	MMBTU/H	generator, Model M501 GAC).	combustion practices.	15.5	5 lb/hr	FIRING)	0.0052	lb/MMBtu				
	Woodbridge Energy Center																
	(CPV Shore, LLC)			Natural Gas	2,307	MMBtu/hr			12.1	l lb/hr							
	Hummel Station LLC		Combustion Turbine	Natural Gas	2,254.00	MMBtu/hr			17.3	3 lb/hr							
	Hummel Station LLC		Combustion Turbine	Natural Gas	2,254.00	MMBtu/hr			14	4 lb/hr							
	Gibson County Generation,																
	LLC		Combustion Turbine	Natural Gas	417	MW						0.0088	lb/MMBtu	24-hr average			
											average of 3 test						
1	York Energy Center Block 2	6/15/2015	5		2512.5	MMBtu/hr	firing NG without duct burner	1	10.3	7 lb/hr	runs		1		1	l	1

RBLCID	FACILITY NAME	PERMIT ISSUANCE DATE	PROCESS NAME	PRIMARY	THROUGHPUT	THROUGHPUT UNIT	PROGRES NOTES	CONTROL METHOD DESCRIPTION	EMISSION LIMIT 1	UNIT	AVG TIME CONDITION	EMISSION LIMIT 2	UNIT	AVG TIME CONDITION	STANDARAD EMISSION LIMIT	TINEE.	AVG TIME CONDITION
RBLCID	KILLINGLY ENERGY	DATE	Natural Gas w/Duct	FUEL	THROUGHPUT	THROUGHPUT UNII		DESCRIPTION	i		CONDITION	LIMIT 2	UNIT	CONDITION	EMISSION LIMIT	UNIT	CONDITION
CT-0161	CENTER ST. CHARLES POWER	6/30/2017	Firing SCPS Combined	Natural Gas	26	39 MMBtu/hr	Duct burner MRC is 946 MMbtu/hr	Good Combustion Good combustion practices and clean	0	005 LB/MMBTU	HOURLY		0)	
LA-0313	STATION	8/31/2016	Cycle Unit 1A	Natural Gas	363	25 MMBTU/hr		burning fuels (natural gas)	1	7.52 LB/H	MAXIMUM	73	35 T/YR)	
I A-0313	ST. CHARLES POWER STATION	8/31/2016	SCPS Combined Cycle Unit 1B	Natural Gas	36	25 MMBTU/hr		Good combustion practices and clean burning fuels (natural gas)		7 52 I B/H	HOURLY MAXIMUM	73	35 T/VR	ANNUAL MAYIMUM		,	
LA-0313	STATION	8/31/2010	Cycle Ollit 1B	Natural Gas	30.	23 MINID I CAR		outning tues (natural gas)	·	7.52 1.15/11	MAAIMOM	19	33 171K	MAXIMOM		1	
							There are 2 combined cycle natural gas-fired combustion turbine generators (CTGs) with heat recovery steam generators (HRSG) identified as EUCTGHRSG1 & EUCTGHRSG2 in the flexible group FGCTGHRSG. The total hours for startup and shutdown for each train shall not										
							exceed 500 hours per 12-month rolling time period.				TEST						
			FGCTGHRSG (2 Combined Cycle				The throughput capacity is 3421 MMBTU/H for each turbine, and 740 MMBTU/H for each duct burner for a combined throughput of 4161 MMBTU/H or 8322 MMBTU/H for both	Good combustion practices, inlet air conditioning, and the use of pipeline			PROTOCOL WILL SPECIFY						
MI-0423	INDECK NILES, LLC	1/4/2017	CTGs with HRSGs) FGCTGHRSG (2	Natural gas	833	22 MMBTU/H	trains.	quality natural gas.		19.8 LB/H	AVG TIME		0)	
			Combined cycle														
	HOLLAND BOARD OF		CTGs with HRSGs; EUCTGHRSG10				Two combined cycle natural gas fired combustion turbine generators (CTGs) with heat recovery steam generators (HRSG) (EUCTGHRSG10 & EUCTGHRSG11 in FGCTGHRSG).				TEST PROTOCOL						
	PUBLIC WORKS - EAST 5TH STREET		&				The total hours for both units combined for startup and shutdown shall not exceed 635 hours	Good combustion practices and the use of	of	014 LB/MMBTU	WILL SPECIFY AVG TIME						
MI-0424	STREET	12/5/2016	EUCTGHRSG11) FG-TURB/DB1-3 (3	Natural gas	3:	54 MMBTU/H, each	per 12-month rolling time period.	pipeline quality natural gas.	- 0	014 LB/MMBTU	AVG TIME		0)	
			combined cycle combustion turbine				Three (3) combined-cycle combustion turbine (CT) / heat recovery steam generator (HRSG)										
			and heat recovery				trains. Each CT is a natural gas fired Mitsubishi model 501G, equipped with dry low NOx										
*MI-0432	NEW COVERT GENERATING FACILITY	7/30/2018	steam generator	Natural gas	12	30 MW	combustor and inlet air evaporative cooling. Each HRSG includes a natural gas fired duct burner with a 256 MMBtu/hr heat input capacity and a dry low NOx burner.	Use clean fuel (natural gas) and good combustion practices.		10.7 LB/H	HOURLY; EACH CT/HRSG TRAIN		0			,	
1111-0-132	OLIVEIT TO THE LETT	7/30/2010	EUCTGHRSG (South Plant): A	Trucului gus	12.	30 M H	A combined-cycle natural gas-fired combustion turbine generator (CTG) with heat recovery	companion practices.		10.77 12.071	Cimino nom						
			combined cycle				steam generator (HRSG) in a 1x1 configuration with a steam turbine generator (STG) for a										
			natural gas-fired combustion turbine				nominal 500 MW electricity production. The CTG is a H-class turbine with a rating of 3,080 MMBTU/H (HHV). The HRSG is equipped with a natural gas-fired duct burner rated at 755										
			generator with heat				MMBTU/H (HHV) at ISO conditions to provide heat for additional steam production. The	Good combustion practices, inlet air									
*MI-0433	MEC NORTH, LLC AND MEC SOUTH LLC	6/29/2018	recovery steam	Natural gas		00 MW	HRSG is not capable of operating independently from the CTG. The CTG/HRSG is equipped	conditioning and the use of pipeline quality natural gas.		19.1 LB/H	HOURLY						
*MI-0433	MEC SOUTH LLC	6/29/2018	generator.	Naturai gas	31	00 MW	with dry low NOx burner (DLNB), SCR and an oxidation catalyst.	quality natural gas.		19.1 LB/H	HOURLY		0			,	
							Nominal 500 MW electricity production. Turbine rating of 3,080 MMBTU/hr (HHV) and HRSG duct burner rating of 755 MMBTU/hr (HHV).										
			EUCTGHRSG														
			(North Plant): A combined-cycle				A combined-cycle natural gas-fired combustion turbine generator (CTG) with heat recovery steam generator (HRSG) in a 1x1 configuration with a steam turbine generator (STG) for a										
			natural gas-fired				nominal 500 MW electricity production. The CTG is a H-class turbine with a rating of 3.080										
			combustion turbine generator with heat				MMBTU/hr (HHV). The HRSG is equipped with a natural gas-fired duct burner rated at 755 MMBTU/hr (HHV) at ISO conditions to provide heat for additional steam production. The	Good combustion practices, inlet air									
l	MEC NORTH, LLC AND		recovery steam		_		HRSG is not carable of operating independently from the CTG. The CTG/HRSG is equipped										
*MI-0433	MEC SOUTH LLC	6/29/2018	generator.	Natural gas	31	00 MW	with dry low NOx burner (DLNB), SCR, and an oxidation catalyst. Two (2) combined-cycle natural gas-fired combustion turbine generators, each with a heat	quality natural gas.		19.1 LB/H	HOURLY		0)	
							recovery steam generator (CTGHRSG).										
			FGCTGHRSG				Plant nominal 1,150 MW electricity production. Turbines are each rated at 3,658 MMBTU/H										
	BELLE RIVER COMBINED		(EUCTGHRSG1 &				and HRSG duct burners are each rated at 800 MMBTU/H.	Good combustion practices, inlet air conditioning, and the use of pipeline			HOURLY; EACH			HOURLY; EAC	H T		
*MI-0435	CYCLE POWER PLANT	7/16/2018	EUCTGHRSG2)	Natural gas		0	The HRSGs are not capable of operating independently from the CTGs.	quality natural gas.		16 LB/H	UNIT	1	2.2 LB/H	BURNER FIRIN	G)	
			Combined Cycle								AV OF THREE						
	MIDDLESEX ENERGY		Combustion Turbine firing Natural Gas								ONE H STACK TESTS EVERY 5						
NJ-0085	CENTER, LLC	7/19/2016	with Duct Burner	natural gas	40	00 h/yr		COMPLIANCE BY STACK TESTING		18.3 LB/H	YR		0)	
	TENASKA PA PARTNERS/WESTMORELA		Large combustion					Good combustion practices with the use									
*PA-0306	ND GEN FAC	2/12/2016	turbine	Natural Gas		0	This process entry is for operations with the duct burner. Limits entered are for each turbine. Emission limits are for each turbine operating with duct burner and do not include	of low ash/sulfer fuels	0.0	039 LB/MMBTU		1	1.8 LB/HR)	
							startup/shutdown emissions. Tons per year limits is a cumulative value for all three CCCT. CEMS for NOx, CO, and O2. Each CCCT and duct burner have 5 operational scenarios:										
1			1		1		1 CCCT with duct burner fired - fueled by NG only 2 CCCT with duct burner fired - fueled by NG blend with ethane										
	CPV FAIRVIEW ENERGY		Combustion turbine and HRSG with duc		1		3 CCCT without duct burner fired - fueled by NG only	I						12-MONTH			
*PA-0310	CPV FAIRVIEW ENERGY CENTER	9/2/2016	and HRSG with due burner NG only Combined Cycle	Natural Gas	33:	38 MMBtu/hr	4 CCCT without duct burner fired - fueled by NG blend with ethane 5 CCCT without duct burner fired - fueled by ULSD (Limited to emergency use only)	Low sulfur fuel, good combustion practices	0	005 LB/MMBTU		13	1.5 TONS	ROLLING BASI	s)	
			Combined Cycle Turbine with Heat														
			Recovery Steam		1												
1			Generator, fired Duct Burners, and		1												
	GAINES COUNTY POWER		Steam Turbine	NATURAL	1		Four Siemens SGT6-5000F5 natural gas fired combustion turbines with HRSGs and Steam	Pipeline quality natural gas; good									
TX-0819	PLANT	4/28/2017	Generator COMBUSTION	GAS	4:	26 MW	Turbine Generators	combustion practices	+	0		1	0		+)	+
			TURBINE GENERATOR		1												
			WITH DUCT-		1												
			FIRED HEAT RECOVERY		1												
	GREENSVILLE POWER		STEAM		1			Low sulfur/carbon fuel and good	1		AVG OF 3 TEST						
*VA-0325	STATION	6/17/2016	GENERATORS (3)	natural gas	32	27 MMBTU/HR	3227 MMBTU/HR CT with 500 MMBTU/HR Duct Burner, 3 on 1 configuration.	combustion pratices	0.0	039 LB/MMBTU	RUNS AVERAGE OF 3	-	0	12-MONTH	-		-
	MARSHALLTOWN		Combustion turbine	l		50 8.4					ONE-HOUR TEST	г _		ROLLING			
*IA-0107	GENERATING STATION		#2 -combined cycle Electric Generation	natural gas		58 mmBtu/hr	Two combined cycle combustion turbines followed by HRSGs with capability for supplemental			0.01 LB/MMBTU	RUNS HOURLY	7	7.1 T/YR	TOTAL	+		+
*IL-0112	NELSON ENERGY CENTER	12/28/2010		Natural Gas	2:	20 MW each	fuel firing in HRSG for each combustion turbine using duct burners. IEACH TURBINE IS EOUIPED WITH DRY LOW NOX BURNERS, NATURAL GAS		0	012 LB/MMBTU	AVERAGE	1	0		+		1
			FOUR (4)		1		FIRED DUCT BURNERS, AND A HEAT RECOVERY STEAM GENERATOR										
			NATURAL GAS COMBINED		1		IDENTIFIED AS HRSG#. NOX EMISSIONS CONTROLLED BY SELECTIVE CATALYTIC REDUCTION SYSTEMS (SCR##) ALONG WITH CO AND VOC										
			CYCLE		1		EMISSSIONS CONTROLLED BY OXIDATION CATAYLST SYSTEMS (CAT##) IN										
*IN-0158	ST. JOSEPH ENEGRY CENTER, LLC	12/3/2012	COMBUSTION TURBINES	NATURAL GAS	23/	00 MMBTU/H	EACH TURBINE. EACH STACK HAS CONTINUOUS EMISSIONS MONITORS FOR NOX AND CO. COMBINED NOMIAL POWER OUTPUT IS 1.350 MW.	GOOD CUMBUSTION PRACTICE AND FUEL SPECIFICATION		18 lb/hr	3 HOURS	0.00	78 LB/MMBTU	3 HOURS			
	SALEM HARBOR STATION	123/2012	Combustion Turbine		2.7						1 HR AVG/DO NOT APPLY	0.00		1 HR AVG/DO NOT APPLY			
			Combustion Turbine	1	1	49 MMBtu/hr	two 315 MW (nominal) GE Energy 7F Series 5 Rapid Response Combined Cycle Combustion Turbines with Duct Burners and 31 MW (estimated) steam turbine generators	1	1	062 LB/MMBTU	NOT APPLY DURING SS	1		NOT APPLY DURING SS	1	1	1

		PERMIT ISSUANCE		PRIMARY				CONTROL METHOD	EMISSION		AVG TIME	EMISSION		AVG TIME	STANDARAD		AVG TIME
RBLCID	FACILITY NAME	DATE	PROCESS NAME	FUEL	THROUGHPUT	THROUGHPUT UNIT		DESCRIPTION	LIMIT 1	UNIT	CONDITION	LIMIT 2	UNIT	CONDITION	EMISSION LIMIT	UNIT	CONDITION
			2 COMBINED- CYCLE COMBUSTION	NATURAL		5 MEGAWATT	TWO GENERAL ELECTRIC (GE) F-CLASS ADVANCED COMBINED CYCLE COMBUSTION TURBINES (CTS) WITH A NOMINAL GENERATING CAPACITY OF 72S MW, COUPLED WITH A HEAT RECOVERY STEAM GENERATOR (HRSG) EQUIPPED WITH DUCT BURNERS, DRY LOW-NOX BURNERS, SCR, OXIDATION	USE OF PIPELINE-QUALITY NATURAL GAS EXCLUSIVELY AND)		AVERAGE OF THREE STACK						
*MD-0041	CPV ST. CHARLES	4/23/2014	TURBINES	GAS	72	S MEGAWATT	CATALYST	GOOD COMBUSTION PRACTICE	0.0	011 LB/MMBTU	TEST RUNS		0			0	+
*MD-0042	WILDCAT POINT GENERATION FACILITY	482014	2 COMBINED CYCLE COMBUSTION TURBINES, WITH DUCT FIRING	NATURAL GAS	100	10 MW	TWO MITSUBSHI & Bequox. & Bequox. & Bequox. MODEL COMBUSTION TURBINE GENERATORS (CTS) WITH A NOMINAL GENERATING CAPACITY OF 2:70 MW CAPACITY EACH, COUPLED WITH A HEAT RECOVERY STEAM GENERATOR (HRKG) EQUIPPED WITH DUCT BURNERS, DRY LOW-NOX COMBUSTORS, SELECTIVE CATALYTIC REDUCTION (SCR), OXIDATION CATALYTST	EXCLUSIVE USE OF PIPELINE QUALITY NATURAL GAS AND EFFICIENT TURBINE DESIGN		39 Ib/be	AVERAGE OF 3 STACK TEST RUNS						
MD-0042	GENERATION FACILITY	4/8/2014		UAS	100	IO NIW	This is a combined-cycle combustion turbine with a non-fired heat recovery steam generator	EFFICIENT TORBINE DESIGN		38 10/11	RUNS		0			U	+
			Combined cycle combustion turbine				(HRSG).										
*MI-0402	SUMPTER POWER PLANT	11/17/2011	w/ HRSG	Natural gas	13	0 MW electrical output	Natural gas-fired combustion turbine conversion to combined-cycle.		0.00	066 LB/MMBTU	TEST	-	7.4 lb/hr	TEST		0	+
	MIDLAND COGENERATION		Natural gas fueled combined cycle combustion turbine generators (CTG) with HRSG and duc				This process is pennitted in a flexible group formst, identified in the permit as FG-TG/DBH2 and is for two natural gas fried CTGs with each turbine containing a best recovery and a first proximating a best recovery flexible on several turbine generator. Each CTG is equited with a dy low Nox (DLN) lumera and a selective catalytic reduction (SCR) system. Additionally, the HRSG is operating with a natural gas fried out burner for supplemental frings.				TEST			TEST			
*MI-0405	VENTURE	4/23/2013	burner (DB)	Natural gas	248	6 MMBTU/H	The throughput is 2,486 MMBTU/H for each CTG/DB.	Good combustion practices	0.0	008 LB/MMBTU	PROTOCOL	1	9.9 lb/hr	PROTOCOL		0	
	MIDLAND COGENERATION		Natural gas fueled combined cycle combustion turbine generators (CTG) with HRSG and duc				This process is permitted in a flexible group format, identified in the permit as FG-CTG/DB1-3 and is for two natural gass fined CTGs with each turbine containing a hear recovery steam generator (HRSO) to operate in combined cycle. The two CTGs (with HRSO) are connected to one steam turbine generator. Each CTG is equipped with a dry low NOX (DLN) burner and a selective catalytic reduction (SCR) system. Additionally, the HRSG is operating with a natural gas fired duct burner for supplemental firing.				TEST						
*MI-0405	VENTURE VENTURE	4/23/2013	burner (DB)	Natural gas	248	6 MMBTU/H	The throughput is 2,486 MMBTU/H for each CTG/DB. Natural gas fired CTG with DB for HRSG; 4 total.	Good combustion practices	0.0	004 LB/MMBTU	PROTOCOL		0			0	
							Natural gas treed. Its with DB for HROG; 4 fordat. Technology A (4 total) is 2887 MMBTUH design heat input each CTG. Technology B (4 total) is 2688 MMBTUH design heat input each CTG. Permit was issued for either of two F Class turbine technologies with slight variations in emission rates. Applicant will sedect one technology. Installation is two separate CTG/HRSG				TEST						
			FGCCA or FGCCB	4			trains driving one steam turbine electrical generator; Two 2X1 Blocks. Each CTG will be	Combustion air filters; efficient			PROTOCOL (3 1-						
*MI-0410	THETFORD GENERATING STATION	7/25/2013	4 nat. gas fired CTG w/ DB for HRSG	natural gas	258	MMBTU/H heat input, cach CTG	rated at 211 to 230 MW (gross) output and the station nominal generating capacity will be up to 1,400 MW.	combustion control; low sulfur natural ga	0.00	066 LB/MMBTU	H TESTS IF POSSIBLE)		0			0	
	JATTEST .	1123/2913	W DD IO III.OO	marcaran gas	200	, cum cro	This process is identified in the permit as FGCTGHRSG; it is 2 combined cycle natural gas- fired combustion turbine generators (CTGs) with Heat Recovery Steam Generators (HRSGs)	Auc.i.	0.01	NO LESMINESTO	T OUSSIDEE)						
*MI-0412	HOLLAND BOARD OF PUBLIC WORKS - EAST 5TH STREET	12/4/2013	FG-CTGHRSG: 2 Combined cycle CTGs with HRSGs with duct burners COMBINED	natural gas	64	MMBTU/H for each	nere commission turing generators (1.10x) win freat recovery seam toenceators (fin-Xxis) equipped with due bruners for supplemental firing (EUTCHBRSG) a EUTCHBRSG). FOR FGCTGHBSG). The total hours for both units combined for startup and shutdown shall not exceed 635 hours per 12-month fulling time period. Each CTGHBSG shall not exceed 647 MMBtuhr on a fuel heat input basis.	Good combustion practices and the use oppeline quality natural gas.		014 LB/MMBTU	TEST PROTOCOL		0			D	
	PSEG FOSSIL LLC SEWAREN GENERATING		CYCLE COMBUSTION TURBINE WITH DUCT BURNER -			MMCUBIC FT PER	Natural Gas Usage = 33,691 MMfr ³ 3yr per 365 consecutive day period, rolling one day basis (per frw Stiemens turbines and two associated duct burners) The heat input rate of the Stiemens turbine will be 2,356 MMBru/hr(HHV) with a 62.1 duct burner MMBru/hr(HHV).				AVERAGE OF						
*NJ-0081	STATION	3/7/2014	SIEMENS COMBINED	Natural Gas	3369	1 YEAR		Use of natural gas a clean burning fuel		14 lb/hr	THREE TESTS		0			0	+
	PSEG FOSSIL LLC SEWAREN GENERATING		CYCLE COMBUSTION TURBINE WITH DUCT BURNER - GENERAL				Natural Gas Usage = 33,691 MMfr ³ -3yr per 365 consecutive day period, rolling one day basis (per two turbines and two duct burners) The heat input rate of each General Electric combustion each turbine will be 2,312	Use of natural gas only as a clean burnin	g		AVERAGE OF THREE ONE						
*NJ-0081	STATION	3/7/2014	ELECTRIC	Natural gas	3369	1 MMCUF/year.	MMBtu/hr(HHV) with a 164.4 MMBtu/hr duct burner This is a 427 MW Siemens Combined Cycle Turbine with duct burner	fuel	- 1	4.6 lb/hr	HOUR TESTS		0			0	+
*NJ-0082	WEST DEPTFORD ENERGY STATION	7/18/2014	Combined Cycle Combustion Turbine with Duct Burner	Natural Gas	2028	2 MMCF/YR	Heat Input rate of the turbine = 2276 MMstuln (HHV) Heat Input rate of the Duct burner= 777 MMsbuln(HHV) The fuel use of 20,282 MMCF/YR is for three turbines and three Duct burners. Two Sierners 2932 MMBuH combined cycle combustion turbines, both with 300 MMBtu/H	Use of Natural gas a clean burning fuel	21	.55 lb/hr	AVERAGE OF THREE STACK TEST RUNS	0.00	069 LB/MMBTU	AVERAGE OF THREE STACK TEST RUNS		0	
	OREGON CLEAN ENERGY		2 Combined Cycle Combustion Turbines-Siemens,				duet burners, with dry low NOx combustors, SCR, and catalytic oxidizer. Will install either 2 Siemens or 2Mistubishi, not both (not determined). Short term limits are different with and without duet burners.							PER ROLLING	12-		
*OH-0352	CENTER	6/18/2013	with duct burners	Natural Gas	5156	0 MMSCF/rolling 12-MO	This process with duct burners. Two Mitsubishi 2932 MMBtu/H combined cycle combustion turbines, both with 300	clean burning fuel, only natural gas		14 lb/hr		6	1.3 T/YR	MONTHS		0	+
*OH-0352	OREGON CLEAN ENERGY CENTER	6/18/2013	2 Combined Cycle Combustion Turbines-Mitsubishi with duct burners	i, Natural Gas			MMBtuH duct burners, with dry low NOx combustors, SCR, and catalytic oxidizer. Will install either 2 Siemens or 2Mitsubishi, not both (not determined). Short term limits are different with and without duct burners. This process with duct burners. This process with duct burners. Four GE TFA combined cycle turbines, dry low NOx burners and selective catalytic reduction.	clean burning fuel, only natural gas	1	0.1 lb/hr		4	4.2 T/YR	PER ROLLING MONTHS	12-	0	
*OH-0356	DUKE ENERGY HANGING ROCK ENERGY	12/18/2012	Turbines (4) (model GE 7FA) Duct Burners On	NATURAL GAS		12 MW	Four GE 7FA combined cycle turbines, dry low NOx burners and selective catalytic reduction. These limits are for each of the 4 turbines individually, while operating with the duct burners on. This permit is a modification to RBLC OH-0252 to remove hourly restrictions on duct burners.	Burning natural gas in an efficient combustion turbine	1	9.9 lb/hr		8	7.2 T/YR	PER ROLLING MONTHS	12	0	
	TROUTDALE ENERGY		Mitsubishi M501- GAC combustion turbine, combined								C UD AVED :			6-HR AVERAG			
*OR-0050	CENTER, LLC	3/5/2014	cycle configuration with duct burner.	natural gs	298	8 MMBtu/hr	or ULSD; Duct burner 499 MMBtu/hr, natural gas	Utilize only natural gas or ULSD fuel; Limit the time in startup or shutdown.	2	3.6 lb/hr	6-HR AVERAGE ON NG	4	2.3 lb/hr	ON ULSD		0	
	MOXIE ENERGY LLC/PATRIOT		Combined Cycle Power Blocks 472				Two natural-gas-fired combined cycle powerblocks where each powerblock consists of a										
*PA-0286	GENERATION PLT	1/31/2013	MW - (2)	Natural Gas		0	combustion turbine and heat recovery steam generator with duct burner.		0.00	057 LB/MMBTU		-	54 T/YR	EACH UNIT		0	
*PA-0288	SUNBURY GENERATION LP/SUNBURY SES	4/1/2013	Combined Cycle Combustion Turbine AND DUCT BURNER (3)	Natural Gas	253800	0 MMBTU/H	Three powerblocks consisting of three (3) natural gas fired F class combustion turbines coupled with three (3) heat recovery steam generators (HSRGs) equipped with natural gas fired duct burners.		0.00	088 LB/MMBTU	12-MONTH		0			D	
*D 4 0206	BERKS HOLLOW ENERGY	12/17/2012	Turbine, Combined	Notes of Co.	20.0	LANDE-A-	Emirad with SCB and Onitation Coulom		40	EC TAVE	ROLLING TOTAL		66 11.0				
*PA-0296	ASSOC LLC/ONTELAUNEE	12/17/2013	Cycle, #1 and #2 Turbine,	Natural Gas	304	6 MMBtu/hr	Equipped with SCR and Oxidation Catalyst		48	.56 T/YR	IOIAL	21	.55 lb/hr	BASED ON A 1	2-	V .	
*PA-0298	FUTURE POWER PA/GOOD SPRINGS NGCC FACILITY	3/4/2014	COMBINED CYCLE UNIT (Siemens 5000)	Natural Gas	226	7 MMBtu/hr			1	5.6 lb/hr	WITH DUCT BURNER	5	8.7 T/YR	MONTH ROLLING TOTAL		0	

	1	PERMIT ISSUANCE		PRIMARY				CONTROL METHOD	EMISSION		AVG TIME	EMISSION		AVG TIME	[STANDARAD		AVG TIME
RBLCID	FACILITY NAME	DATE	PROCESS NAME	FUEL	THROUGHPUT	THROUGHPUT UNIT	PROCESS NOTES	DESCRIPTION	LIMIT 1	UNIT	CONDITION	LIMIT 2	UNIT	CONDITION	EMISSION LIMIT	UNIT	CONDITION
	COLOR ADO BEND ENERGY		Combined-cycle gas turbine electric	s			combined cycle power plant that uses two combustion turbines and one steam turbine, model										
*TX-0730	CENTER	4/1/2015	generating facility	natural gas	110	0 MW	GE 7HA.02	efficient combustion, natural gas fuel		43 lb/hr			0)	
			Combined Cycle Turbines (>25				Two power configuration options authorized										
	EAGLE MOUNTAIN STEAM		MW) – natural				Siemens â& 231 MW + 500 million British thermal units per hour (MMBtu/hr) duct burner										
*TX-0751	ELECTRIC STATION	6/18/2015	5 gas	natural gas	21	0 MW	GE – 210 MW + 349.2 MMBtu/hr duct burner		35	.47 lb/hr		81	.88 T/YR)	
			Combined Cycle				Two power configuration options authorized										
*TX-0767	LON C. HILL POWER STATION	10/2/2015	Turbines (>25		10	5 MW	Siemens – 240 MW + 250 million British thermal units per hour (MMBtu/hr) duct burner GE – 195 MW + 670 MMBtu/hr duct burner	Good combustion practices and use of pipeline quality natural gas		16 11-4		1.0	9.5 T/YR		1 .	,	
	CHEYENNE PRAIRIE		Combined Cycle	natural gas			GE at: 193 MW ± 670 MINIBURE duct burner			10 lour	3-HOUR			CALENDAR		,	
*WY-0070	GENERATING STATION INTERNATIONAL STATION	8/28/2012	GE I M6000PF-25	Natural Gas	4	0 MW		good combustion practices		4 lb/hr	AVERAGE 3-HOUR	1	7.5 T/YR	YEAR	-)	
AK-0071	POWER PLANT	12/20/2010	Turbines (4)	Natural Gas	5990	0 hp ISO	Turbine-duct burner pairs exhaust through common stack	Good Combustion Practices	0.0	066 LB/MMBTU	AVERAGE		0)	
								Combustion Turbines EU IDs 5-8 use									
								good combustion practices involve									
								increasing the residence time and excess	3								
	INTERNATIONAL STATION						EU IDs 5-8 Combined Cycle Natural Gas-fired Combustion Turbines rated at 59,900 hp (44.7	oxygen to ensure complete combustion which in turn minimize particulates									
AK-0073	POWER PLANT	12/20/2010	Fuel Combustion	Natural Gas	5990	0 HP	MW)	without an add-on control technology.	0.0	066 LB/MMBTU	3-HOUR		0)	
								USE PUBLIC UTILITY COMMISSION	N .								
								QUALITY NATURAL GAS W/									
CA-1144	BLYTHE ENERGY PROJECT	4/25/2007	2 COMBUSTION	NATURAL	17	0 MW	EACH TURBINE WILL PRODUCE 170 MW	SULFUR CONTENT LESS THAN OR EQUAL TO 0.5 GRAINS PER 100 SCE		6 lb/hr			61 T/YR		1 .		
C31-11-1-1		1/23/2001	COMBUSTION	TOTAL STATE OF THE		0 14.11	INCIT FORDILL WILL INODOCE ITO MA	EQUILE TO 0.5 GREAT TER 100 SCI		O IOIL			0111111				
			TURBINE #2 (NORMAL								12-MONTH						
			OPERATION,								ROLLING AVG						
CA-1191	VICTORVILLE 2 HYBRID POWER PROJECT	3/11/2010	WITH DUCT	NATURAL	15	4 MW	154 MW Combined Cycle Combustion Turbine Generator	PUC QUALITY NATURAL GAS		19 Ib-lie	(W/ DUCT BURNING)				1 .	,	
CA-1191	TOWERTROJECT	3/11/2010	BURNING) COMBUSTION	UAS		4 N.W	154 M W Contolled Cycle Colliduxion Futblic Generator	TOC QUALITY NATORAL GAS		10 10 11	BUKINING)		-			1	
			TURBINE #1 (NORMAL														
			OPERATION,														
CA-1192	AVENAL ENERGY PROJECT	6/21/2011	WITH DUCT BURNING)	NATURAL	10	0 MW		LISE BUG ON A LEV NATURAL CAS		78 lb/hr	12-MONTH ROLLING AVG				1 .	,	
CA-1192	AVENAL ENERGY PROJECT	6/21/2011	BURNING)	GAS	18	UMW		USE PUC QUALITY NATURAL GAS		./8 lb/hr	ROLLING AVG		0		-	,	
			COMBUSTION					USE PIPELINE QUALITY NATURAL GAS, OPERATE DUCT BURNERS NO			6-HR ROLLING			6-HR ROLLING			
	MORRO BAY POWER		TURBINE	NATURAL				MORE THAN 4000 HRS PER YEAR	9		AVG (NO DUCT			AVG (W/ DUCT			
CA-1198	PLANT	9/25/2008	GENERATOR COMBUSTION	GAS	18	0 MW		(12-MONTH ROLLING AVG BASIS)		11 lb/hr	BURNING)	1	3.3 lb/hr	BURNING))	
			TURBINES														
CA-1211	COLUSA GENERATING	3/11/2011	(NORMAL	NATURAL		2 MW	TWO (2) NATURAL GAS FIRED TURBINES AT 172 MW EACH. BOTH TURBINES			3.5 lb/hr							
CA-1211	STATION	3/11/2011	OPERATION)	GAS	17	2 MW	EQUIPPED WITH A 688 MMBTU/HR DUCT BURNER AND HRSG. TWO NATURAL GAS-FIRED COMBUSTION TURBINE-GENERATORS (CTGS) RATED.	USE NATURAL GAS	· '	3.5 lb/fir	STACK TEST	+	0	_	-	,	
			COMBUSTION				AT 154 MEGAWATT (MW, GROSS) EACH, TWO HEAT RECOVERY STEAM										
	PALMDALE HYBRID		TURBINES (NORMAL	NATURAL			GENERATORS (HRSG), ONE STEAM TURBINE GENERATOR (STG) RATED AT 267 MW, AND 251 ACRES OF PARABOLIC SOLAR-THERMAL COLLECTORS WITH				9-HR AVG (NO			9-HR AVG (W/			
CA-1212	POWER PROJECT	10/18/2011	OPERATION)	GAS	15	4 MW	ASSOCIATED HEAT-TRANSFER EQUIPMENT	USE PUC QUALITY NATURAL GAS	0.0	048 LB/MMBTU	DUCT BURNING	i) 0.0	49 LB/MMBTU	DUCT BURNIN	3))	
			SIEMENS SGT6-														
			5000F														
			COMBUSTION TURBINE #1 AND	,			THROUGHPUT IS FOR TURBINE ONLY WHEN FIRING NATURAL GAS										
			#2 (NATURAL				TURBINE: 2136 MMBTU/HR (2.095 MMCF/HR)										
			GAS FIRED) WITH	1			DUCT BURNER: 445 MMBTU/HR (0.436 MMCF/HR)										
	KLEEN ENERGY SYSTEMS,		NATURAL GAS	NATURAL			EMISSION RATES ARE FOR EACH COMBUSTION TURBINE FIRING NATURAL GAS,				W/OUT DUCT			W/ DUCT			
CT-0151	LLC	2/25/2008	DUCT BURNER COMBUSTION	GAS	2.	1 MMCF/H	NOT COMBINED.			11 lb/hr	BURNER	1	5.2 lb/hr	BURNER	-)	
			TURBINE,														
	LANGLEY GULCH POWER		COMBINED CYCLE W/ DUCT	NATURAL			SIEMENS SGT6-5000F COMBUSTION TURBINE (NGCT, CCGT) FOR ELECTRICAL	GOOD COMBUSTION PRACTICES									
ID-0018	PLANT	6/25/2010	BURNER	GAS (ONLY)	2375.2	8 MMBTU/H	GENERATION, NOMINAL 269 MW AND 2.1466 MMSCF/HR	(GCP)		0	SEE NOTE		0)	
	PLAOUEMINE		(4) GAS TURBINES/DUCT	NATURAL			VISUAL INSPECTION FOR OPACITY ON A WEEKLY BASIS, STACK TESTS FOR PM, NOX, SO2, OPACITY, CO				HOURLY			ANNUAL			
LA-0136	COGENERATION FACILITY	7/23/2008	BURNERS	GAS	287	6 MMBTU/H	EMISSION POINTS GT-500, -600, -700, -800.	USE OF CLEAN BURNING FUELS USE OF CLEAN BURNING FUEL	3	3.5 lb/hr	MAXIMUM		139 T/YR	MAXIMUM)	
			GAS TURBINES -					USE OF CLEAN BURNING FUEL AND GOOD COMBUSTION			HOURLY			ANNUAL			NOT
LA-0192	CRESCENT CITY POWER	6/6/2005	5 187 MW (2)		200	6 MMBTU/H		PRACTICES		9.4 lb/hr	MAXIMUM	12	8.8 T/YR	MAXIMUM)	AVAILABLE
								WHILE FIRING NATURAL GAS: USE OF PIPELINE QUALITY NATURAL	i i								
					1			GAS AND GOOD COMBUSTION									1
			COMBINED		1			PRACTICES									1
			CYCLE TURBINE				TURBINES ALSO PERMITTED TO BURN NO. 2 FUEL OIL AND ULTRA LOW SULFUR										1
	NINEMILE POINT ELECTRIC GENERATING		GENERATORS	NATURAL	1		DIESEL.	ULTRA LOW SULFUR FUEL OIL AND GOOD COMBUSTION			HOURLY AVERAGE W/O			HOURLY AVERAGE W/			1
LA-0254	PLANT	8/16/2011	(UNITS 6A & amp; 6B)	GAS	714	6 MMBTU/H	FUEL OIL USE IS LIMITED TO 1000 HOURS PER YEAR	AND GOOD COMBUSTION PRACTICES	2/	.23 lb/hr	AVERAGE W/O DUCT BURNER	33	.16 lb/hr	AVERAGE W/ DUCT BURNER	.1		1
	i i		COGENERATION	Ī	/		FUEL OIL USE IS LIMITED TO 1000 HOURS PER YEAR. EACH COGEN TRAIN CONSISTS OF A 50 MW GE LM6000 PF SPRINT TURBINE AND	USE OF NATURAL GAS AS FUEL									
LA-0256	COGENERATION PLANT	12/6/2011	TRAINS 1-3 (1-10, 2-10, 3-10)	NATURAL GAS	47	5 MMBTU/H	A HEAT RECOVERY STEAM GENERATOR EQUIPPED WITH A 70 MM BTU/HR DUCT BURNER.	AND GOOD COMBUSTION PRACTICES		.72 lb/hr	HOURLY MAXIMUM		0		1 .		1
		1202011	Combined Cycle	1													
	SABINE PASS LNG		Refrigeration Compressor		1			Good combustion practices and fueled by	v		HOURLY						1
LA-0257	TERMINAL	12/6/2011	Turbines (8)	natural gas	28	6 MMBTU/H	GE LM2500+G4	natural gas		.08 lb/hr	MAXIMUM		0		1)	
							EACH TURBINE IS EQUIPPED WITH A HEAT RECOVERY STEAM GENERATOR (HRSG). EACH HRSG IS FOUIPPED WITH A NATURAL GAS FIRED DUCT BURNER.	STATE OF THE ART COMBUSTION									
			3 COMBUSTION		1		(650 MMBTU/H). TOTAL NOMINAL PLAN GENERATING CAPACITY WITHOUT	TECHNIQUES AND USE									1
MI-0366	BERRIEN ENERGY, LLC		TURBINES AND DUCT BURNERS	NATURAL		4 MMBTU/H	DUCT FIRING IS 800 MW. A MAX OUTPUT OF 1100 MW THROUGH SUPPLEMENTAL FIRING OF HRSGS.	OF NATURAL GAS ARE BACT FOR PM10.		10 15 4			3.3 T/YR			,	1
MI-0366	DERKIEN ENERGY, LLC	4/13/2005		UAS	158	*LWMB1U/H	SUPPLEMENTAL FIRING OF HRSGS.	FM10.		13 lp/hr	+	29	3.3 1/YK		1	1	1
			COMBINED		1												CTG OIL & DB
			CYCLE COMBUSTION		1		COMBUSTION TURBINE PERMITTED TO USE NG & NO. 2 OIL; DUCT BURNER										NOT OPERATE
	L		TURBINE	NATURAL			PERMITTED TO USE NG & NO. 2 OIL. DUCT BURNER ALSO AUTHORIZED TO				CTG NG OR CTG			CTG NG & DB			OR DB NG OR
MN-0071	FAIRBAULT ENERGY PARK	.1 6/5/2007	W/DUCT BURNER	RJGAS	175	8 MMBTU/H	COMBUST LIQUID BIOFUEL.	1	(.01 LB/MMBTU	& DB NG	0.0	15 LB/MMBTU	JOIL	0.0	LB/MMBTU	JOIL

		IPERMIT ISSUANCE		IDDIMADV				ICONTROL METHOD	IEMISSION		IAVG TIME	IEMISSION		IAVG TIME	ISTANDARAD		IAVG TIME
RBLCID	FACILITY NAME	DATE	PROCESS NAME	FUEL	THROUGHPUT	THROUGHPUT UNIT	PROCESS NOTES	DESCRIPTION	LIMIT 1	UNIT	CONDITION	LIMIT 2	UNIT	CONDITION	EMISSION LIMIT	UNIT	CONDITION
			TURBINE & amp;														
			DUCT BURNER, COMBINED				Each of these units have a natural gas-fired HRSG & a	CLEAN BURNING LOW-SULFUR									
			CYCLE, NAT GAS	NATURAL			natural gas fired duct burner. Limits for this process	FUELS AND GOOD									
NC-0101	FORSYTH ENERGY PLANT	9/29/2005	TURBINE,	GAS	1844	3 MMBTU/H	are for turbines and duct burners.	COMBUSTION PRACTICES CLEAN FUELS - NATURAL GAS	0	021 LB/MMBTU	3-hr avg		0		(
			COMBINED	NATURAL				AND ULTRA LOW SULFUR (15PPM									
NJ-0074	WEST DEPTFORD ENERGY CAITHNES BELLPORT	5/6/2009	CYCLE	GAS NATURAL	172	8 MMFT3/YR		SULFUR) DISTILLATE OIL	1	3.66 lb/hr			0		(
NY-0095	ENERGY CENTER	5/10/2006	COMBUSTION TURBINE	GAS	22	MMBUT/H	COMBINED CYCLE WITH DUCT FIRING UP TO 494 MMBTU/H	LOW SULFUR FUEL	0.0	055 LB/MMBTU	NO DUCT BURNING	0.00	66 LB/MMBTU	W/DUCT BURNING			
		5/10/2000	COMBUSTION	U.L.		- I MANDO I M	COMBINED CICLE WITH BOCT INCIVOR TO 454 MINISTON	EOW BOLF CRITCEL	0.0	USS EDMINIDIO	DOMINIO	0.00	SO EDMANDIC	DORMETO	<u> </u>		
OK-0115	LAWTON ENERGY COGEN FACILITY	12/12/2004	TURBINE AND DUCT BURNER					GOOD COMBUSTION PRACTICES	0.0	067 LB/MMBTU							
OK-0113		12/12/2006							0.0	00/ LB/MMB1U			0				
	PSO SOUTHWESTERN		GAS-FIRED					USE OF LOW ASH FUEL (NATURAL									
OK-0117	POWER PLT	2/9/2007	TURBINES					GAS) AND EFFICIENT COMBUSTION	N 0.0	093 LB/MMBTU			0		(
			CYCLE														
			COGENERATION	NATURAL													
OK-0129	CHOUTEAU POWER PLANT	1/23/2009	>25MW COMBINED	GAS	18	2 MMBTU/H	SIEMENS V84.3A	NATURAL GAS FUEL		5.59 lb/hr	3-H AVG	0.00	35 LB/MMBTU	24-H AVG	- (1	
			CYCLE NATURAL	-													
			GAS-FIRED ELECTRIC														
			GENERATING	NATURAL													
OR-0048	CARTY PLANT	12/29/2010	UNIT	GAS	286	6 MMBTU/H		CLEAN FUEL		2.5 LB/MMCF		0.00	83 LB/MMBTU		(
							Two combine cycle Turbines each with a combustion turbine and heat recovery steam										
			Combined-cycle				generator with duct burner. Each combined-cycle process will be rated at 468 MW or less.									1	
	MOXIE LIBERTY		Turbines (2) -				The heat input rating of each combustion gas turbine is 2890 MMBtu/hr (HHV) or less, and the		:		FOR 468 MW			FOR 454 MW	1	1	
PA-0278	LLC/ASYLUM POWER PL T	10/10/2012	Natural gas fired	Natural Gas	32	7 MMBTU/H		content.	0	004 LB/MMBTU	POWERBLOCK	0.00	57 LB/MMBTU	POWERBLOCK	-	-	
							GREEN POWER ONE WILL CONSIST OF TWO NOMINALLY RATED 35 MW GAS									1	
							FIRED TURBINES AND TWO HEAT RECOVERY STEAM GENERATORS, EQUIPPED WITH 312 MMBTU/HR DLICT BURNERS. THE COMBUSTION TURBINES WILL.					1			1	1	
							ONLY BURN PIPELINE OUALITY SWEET NATURAL GAS. THE DUCT BURNERS										
							WILL BURN NATURAL GAS, COMPLEX GAS OR MIXTURES OF NATURAL GAS										
							AND COMPLEX GAS. STEAM PRODUCED IN THE HRSGS WILL BE USED IN THE										
			COGENERATION				CHOCOLATE BAYOU WORKS CHEMICAL COMPLEX. THE CHEMICAL COMPLEX WILL CONSUME APPROXIMATELY HALF OF THE ELECTRICAL OUTPUT	THE USE OF PROPER COMBUSTION CONTROL AND FIRING ONLY	1								
			TRAIN 2 AND 3				PRODUCED BY THE TWO NEW TURBINES. EXCESS POWER PRODUCED BY THE	GASEOUS FUELS CONTAINING NO									
			(TURBINE AND				COMBUSTION TURBINES WILL BE SOLD TO THE GRID.	ASH IS BACT FOR PARTICULATE									
	INEOS CHOCOLATE		DUCT BURNER	NATURAL				MATTER FROM THE GAS FIRED									
TX-0497	BAYOU FACILITY	8/29/2006	EMISSIONS) WESTINGHOUSE/	GAS		5 MW	THE EMISSIONS ARE PER TRAIN.	TURBINES AND DUCT BURNERS.	1	0.03 lb/hr		71.	32 T/YR		(
			SIEMENS MODEL					STEAG POWER LLC REPRESENTS									
			SW501F GAS					THE FIRING OF PIPELINE NATURAL									
	NACOGDOCHES POWER STERNE GENERATING		TURBINE W/ 416.5 MMBTU DUCT	NATURAL				GAS IN THE COMBUSTION	_								
TX-0502	FACILITY	6/5/2006	BURNERS	GAS	10	0 MW		TURBINES AND DUCT FIRED HRSG AS BACT FOR PM10.		26.9 lb/hr		274	.4 T/YR				
171 0502	TACALAT I	0/3/2000	DORITERO	U. L.			The plant will be designed to generate 1,350 nominal megawatts of power. There are two	no biter rotermio.							—		
							configuration scenarios: either four Siemens SGT6-5000F CTGs in combined-cycle mode										
TX-0590	KING POWER STATION	8/5/2010	Turkina	natural gas	121	0 MW	(Scenario A) or four GE Frame 7FA CTGs in combined cycle mode (Scenario B). Scenario B also includes one or two auxiliary boilers.	use of low ash fuel (natural gas or low sulfur diesel as a backup)		11.1 lb/hr		16	8 llb/hr		(
	CHANNEL ENERGY	0.5/2510	Combined Cycle	natara gas			The turbine is a Siemens 501F rated at a nominal 180 MW and the duct burner will have a	good combustion and the use of gaseous		1.1 10.11		-	.0 10111		 		
TX-0618	CENTER LLC	10/15/2012	Turbine	natural gas	11	0 MW	maximum design heat input of 475 MMBtu/hr.	fuel		27 lb/hr			0		(
							natural gas-fired combined cycle turbine generator with a heat recovery steam generator equipped with a duct burner. The turbine is a Siemens 501F rated at a nominal 180 megawatts										
	DEER PARK ENERGY		Combined Cycle				and the DB will have a maximum design rate capability of 725 million British thermal units	good combustion and the use of natural									
TX-0619	CENTER	9/26/2012	Turbine COMBINED	natural gas	13	0 MW	per hour	gas		27 lb/hr			0	3 HR AVG	(
			CYCLE TURBINE								3 HR AVG.			WITH DUCT			
	WARREN COUNTY POWER		& DUCT				Emissions are for one of three units (Mitsubishi natural gas-fired combustion turbine (CT)	Natural Gas only, fuel has maximum			DUCT BURNER	.		BURNER			
VA-0315	PLANT - DOMINION	12/17/2010	BURNER, 3	Natural Gas	299	6 MMBTU/H	generator, Model M501 GAC).	sulfur content of 0.0003% by weight.		8 lb/hr	FIRING)		14 lb/hr	FIRING)	(
	GATEWAY COGENERATION 1, LLC -		COMBUSTION				P	Class bossis - foots and another transfer									
/A-0319	SMART WATER PROJECT	8/27/2012	TURBINES, (2)	Natural Gas	51	3 MMBTU/H	Burns primarily natural gas but has the capacity to burn up to 500 hours of ultra low sulfur diesel fuel (ULSD) as backup.	Clean-burning fuels and good combustion practices.	"	5 lb/hr	3 H AVG		0				
			COMBUSTION				, , ,							3 H			
VA-0321	BRUNSWICK COUNTY POWER STATION	3/12/2013	TURBINE	N		2 MMBTU/H	Three (3) Mitsubishi M501 GAC combustion turbine generators with HRSG duet burners	Low sulfur/carbon fuel and good		047 LB/MMBTU	3 H AVG/WITH DUCT BURNING		210.0-	AVG/WITHOUT DUCT BURNING	,	3 H AVG/WITH DUCT BURNING	
vA-0321	I OWER STATION	3/12/2013	GENERATORS, (3) GE 7FA	Natural Gas	344	LIMIND I U/II	(natural gas-fired).	combustion practices.	0.0	UT/ LD/MMBIU	DUCT BURNING	· '	. / Itviir	DUCT BURNING	16.3	DUCT BURNING	
			COMBUSTION	1												1	
			TURBINE & amp; HEAT RECOVERY	,			THREE IDENTICAL CT & HSRG UNITS. EACH CT WILL HAVE AN ANNUAL							1	1	1	
	BP CHERRY POINT		STEAM	NATURAL			AVERAGE CAPACITY RATING OF 1614 MMBTU/HR. EACH HRSG DUCT BURNER	LIMIT FUEL TYPE TO NATURAL						1	1	1	
VA-0328	COGENERATION PROJECT	1/11/2005	GENERATOR	GAS	1	4 MW	WILL HAVE A MAXIMUM FIRING RATE OF 105 MMBTU/HR.	GAS		17 lb/hr			0		(*SEE NOTES
	Astoria Energy LLC		Combustion Turbine	Natural Gas	100	0 MW		Clean Fuel	0.0	098 lb/MMBtu	1-hr average; Due Burners On	it	1 S Bolor	1-hr average; Due Burners On	t	1	
								Pipeline quality low sulfur NG; DLN					10 Id/III	Dumers On	1		
	Catoctin Power LLC		Combustion Turbine	Natural Gas	11	0 MW		combustion design		21.1 lb/hr	3-hr average				1		
	Di V-II E C		Combonian To 1	Notes Co.	20	2 MMBtu/hr				004 11-24240			8 lb/hr				
	Pioneer Valley Energy Center Russell City Energy Company,		Combustion Turbine	Natural Gas				1		004 lb/MMBtu	-		.0 10 11	+	+	 	
	LLC		Combustion Turbine	Natural Gas	2038	6 MMBtu/hr				7.5 lb/hr		0.00	36 lb/MMBtu				
	Toursky Boston I I C		Combustion To 1	Notes Co.	21	7 MMBtu/hr				11.8 lb/hr		0.00	39 lb/MMRm				
	Tenaska Partners LLC UGI Development Co/ Hunlock		Combustion Turbine	natural Gas	314	/ www.btwhr		1	+	11.6 lb/hr		0.00	D9 ID/MMBIU	_	1		
	Creek			Natural Gas	471	2 MMBtu/hr			0.0	141 lb/MMBtu							
	Hawkeye Generating, LLC			Natural Gas	6	5 MW			0.0	111 lb/MMBtu 011 lb/MMBtu		211.	86 T/YR	_			
	Hawkeye Generating, LLC Huntington Beach Energy			Natural Gas	6	5 MW			0	011 lb/MMBtu		211.	86 T/YR	+	+	-	
	Project		<u> </u>	Natural Gas	9:	9 MW (net)				4.5 lb/hr						<u></u>	
	Huntington Beach Energy																
	Project		1	Natural Gas	9:	9 MW (net)			+	9.5 lb/hr	-	+	+	+	+	-	
	Hess Newark Energy Center		Combustion Turbine	Natural Gas	233	0 MMBtu/hr				11 lb/hr						1	
	Hess Newark Energy Center		Combustion Turbine	Natural Gas	220	6 MMBtu/hr				13.2 lb/hr	-l	1			1		
	York Energy Center Block 1		1	1	15'	4 MMBtu/hr 4 MMBtu/hr			0.0	141 lb/MMBtu 141 lb/MMBtu	hourly basis		+	+	1		
					19:	- International	1		0.0	A TALLED IN INVINIDUE		+					-
	Liberty Electric Power, LLC Footprint Power Salem Harbor		Combustion Turbine		1	6 MW		Clean Fuel			1-hr average; Duc	rt	62 lb/MMBtu	1-hr average; Due	t		

		IPERMIT ISSUANCE		PRIMARY				CONTROL METHOD	EMISSION		AVG TIME	EMISSION		AVG TIME	STANDARAD	IA.	VG TIME
RBLCID			PROCESS NAME		THROUGHPUT	THROUGHPUT UNIT	PROCESS NOTES			UNIT		LIMIT 2	UNIT	CONDITION	EMISSION LIMIT		CONDITION
	Footprint Power Salem Harbor										1-hr average; Duct					=	=
	Development LP		Combustion Turbine	Notural God	2.44	s MW		Clean Fuel	0.04	LB/MW-hr	Burners On					1	
	Development Li		Compasion raionic	Natural Gas	340	J INLW		Cicali Fuci	0.04	LD/MW-III	Duners On						$\overline{}$
	Kalama Energy Center		Combustion Turbine	Natural Gas	224	7 MMBtu/hr			17.	lb/hr	3-hr average	0.0068	lb/MMBtu	3-hr average			
	Kalama Energy Center		Combustion Turbine	Natural Gas	224	7 MMBtu/hr			70	T/YR	12-mo rolling						
	GenConn Middletown LLC		Combustion Turbine	Natural Gas	474.9	9 MMBtu/hr				5 lb/hr							
	1										30-day rolling					1	
	PacifiCorp Energy		Block 1 CT	Natural Gas					10.8	3 lb/hr	average						
	PacifiCorp Energy		Block 2 CT	Natural Gas		MW				4 Ib/hr	30-day rolling average					1	
	Sevier Power Company Power		Block 2 C1	Naturai Gas	023	9 IVI W		+	1.	+ Itt/III	30-day rolling				_		
	Plant		Combustion Turbine	Notural God	59/	MW			10	1 lb/br	average					1	
	1 faint		COMBINED	Natural Gas	300	/ IVI VV			, ·	V I I CO I II	average						$\overline{}$
	1		CYCLE TURBINE								(WITH DUCT					1	
	WARREN COUNTY POWER		& DUCT				Emissions are for one of three units (Mitsubishi natural gas-fired combustion turbine (CT)	Oxidation catalyst and good combustion			BURNER					1	
	PLANT - DOMINION		BURNER, 3	Natural Gas	2996	6 MMBTU/H	generator, Model M501 GAC).	practices.	21.3	2 lb/hr	FIRING)	0.006	lb/MMBtu				
	Woodbridge Energy Center																
	(CPV Shore, LLC)			Natural Gas	280	7 MMBtu/hr			19.	l lb/hr							
	Woodbridge Energy Center															1	
	(CPV Shore, LLC)			Natural Gas	230	7 MMBtu/hr			12.	l lb/hr							
	Hummel Station LLC		Combustion Turbine	Notes Co.	226	4 MMBtu/hr			12.	B Ib/hr						1	
	Gibson County Generation,		Combustion Turbine	Naturai Gas	2231	+ MMDWIII		+	17.	S HO/HF				_			$\overline{}$
	LLC		Combustion Turbine	Natural Gas	41*	7 MW					1	0.0089	lb/MMBtu	24-hr average			
	LLC		Companion I dionic	Transaction Class	71.						average of 3 test	0.008	, in minibile	2 in average			$\overline{}$
	York Energy Center Block 2	6/15/2015			2512.5	MMBtu/hr	firing NG with duct burner		18.4	1 lb/hr	runs		1				
	Cricket Valley Energy Center		Combustion Turbine	Natural Gas	1000	MW			191.9	T/YR							
	Shell Chemical									1	combustion turbines with duct		1				
	Appalachia/Petrochemicals Complex	6/18/2015				4 MMBtu/hr	each of the combustion turbines with duct burners		0.006	ib/MMBtu			1				
	Complex	6/18/2015			664	+ INIMBIU/III	each of the combustion turbines with duct burners		0.0060	in/www.ti	burners						

	1	IPERMIT ISSUANCE	1	IPRIMARY			Invenergy, LLC - Allegneny County Energ	CONTROL METHOD	TEMISSION		TAVC TIME	IFMISSION		IAVC TIME	ISTANDARAD		TAVC TIME
RBLCID	FACILITY NAME	DATE	PROCESS NAME	FUEL	THROUGHPUT	THROUGHPUT UNIT	PROCESS NOTES	DESCRIPTION	LIMIT 1	UNIT	CONDITION	LIMIT 2	UNIT	CONDITION	EMISSION LIMIT	UNIT	CONDITION
CT-0161	KILLINGLY ENERGY CENTER	6/30/2017	Natural Gas w/o Duct Firing	Natural Gas	296	MMBtu/hr	Throughput is for turbine only	Good Combustion	0.044	LB/MMBTU			0			0	
			Combined-cycle				3-on-1 combined cycle unit. GE 7HA.02 turbines, approximately 350 MW per turbine. Total										
	OKEECHOBEE CLEAN		electric generating				unit generating capacity is approximately 1,600 MW. Primarily fueled with natural gas.			GR. S/100 SCF	FOR NATURAL						
FL-0356	ENERGY CENTER	3/9/2016	5 unit	Natural gas	309	MMBtu/hr per turbine	Permitted to burn the base-load equivalent of 500 hr/yr per turbine on ULSD.	Use of clean fuels	2	GAS	GAS	0.001	5 % S IN ULSD	FOR ULSD		0	
	DANIA BEACH ENERGY		2-on-1 combined														
*FL-0363	CENTER	12/4/2017	Cycle unit (GE 7HA)	Natural gas	400	MMBtu/hr	Two nominal 430 MW combustion turbines, coupled to a steam turbine generator	Clean fuels Good combustion practices and the use of	6				0			0	+
			cycle CTG with				A 1,934.7 MMBTU/H natural gas fired heavy frame industrial combustion turbine. The	pipeline quality natural gas, combustion	1								
MI-0427	FILER CITY STATION	11/17/2017	unfired HRSG)	Natural gas	1934.	MMBTU/H	turbine operates in combined-cycle with an unfired heat recovery steam generator (HRSG). Two (2) combined-cycle natural gas-fired combustion turbine generators, each with a heat	inlet air filter.	0.0066	LB/MMBTU			D			0	+
							recovery steam generator (CTGHRSG).										
			FGCTGHRSG				Plant nominal 1,150 MW electricity production. Turbines are each rated at 3,658 MMBTU/H										
			(EUCTGHRSG1				and HRSG duct burners are each rated at 800 MMBTU/H.	Good combustion practices, inlet air						HOURLY; EACH			
*MI-0435	BELLE RIVER COMBINED CYCLE POWER PLANT	7/16/2018	& 8 EUCTGHRSG2)	Natural gas		,	The HRSGs are not capable of operating independently from the CTGs.	conditioning, and the use of pipeline quality natural gas.	16	LB/H	HOURLY; EACH UNIT	12.3	2 LB/H	UNIT W/O DUCT BURNER FIRING		0	
			Combined Cycle								AV OF THREE						
	MIDDLESEX ENERGY		Combustion Turbine firing Natural Gas					USE OF NATURAL GAS A CLEAN			ONE H STACK TESTS EVERY 5						
NJ-0085	CENTER, LLC	7/19/2016	S without Duct Burner	Natural Gas	804	H/YR		BURNING FUEL	11.7	LB/H	YR		D			0	
			Combustion turbine														
	CPV FAIRVIEW ENERGY		and HRSG without				Emission limits are for each turbine fueled by NG and operating without duct burner being	Low sulfur fuels and good combustion	1								
*PA-0310	CENTER	9/2/2016	duct burner NG only	Natural gas	+ '		fired and do not include startup/shutdown emissions.	practices	0.0068	LB/MMBTU			0	+		0	+
			Combined Cycle				2 CTGs to operate in simple cycle & combined cycle modes. 231 MW (Siemens) or 210 MW	GOOD COMBUSTION PRACTICES,	1								
TX-0788	NECHES STATION	3/24/2016	& & & Cogeneration	natural gas	23	MW	(GE) Simple cycle operations limited to 2,500 hr/yr.	LOW SULFUR FUEL	19.35	LB/H			0	+	-	0	+
	DECORDOVA STEAM		Combined Cycle				2 CTGs to operate in simple cycle & combined cycle modes. 231 MW (Siemens) or 210 MW	GOOD COMBUSTION PRACTICES	1				1				1
TX-0789	ELECTRIC STATION	3/8/2016	& & & Cogeneration Refrigeration	natural gas	23	MW	(GE). Simple cycle operations limited to 2,500 hr/yr.	AND LOW SULFUR FUEL	35.47	LB/H		-	0		-	0	+
	PORT ARTHUR LNG		Compression						1								
TX-0790	EXPORT TERMINAL	2/17/2016	Simple Cycle	natural gas	- 10	M TONNES/YR	Four GE Frame 7E gas turbines for refrigeration and compression at the site	Equipment specifications & work	11.07	LB/H		42.15	5 T/YR			0	+
			Electrical					practices -									
TX-0790	PORT ARTHUR LNG EXPORT TERMINAL	2/17/2016	Generation Gas Turbines 15.210	natural gas	3-	MW	Nine GE PGT25+G4 gas turbines for electrical generation at the site at 34 MW/turbine	Good combustion practices and use of low carbon, low sulfur fuel	2.32	LB/H		8.84	4 T/YR			0	
	CHOCOLATE BAYOU STEAM GENERATING		Combined Cycle	NATURAL													
TX-0817	(CBSG) STATION	2/17/2017	Combined Cycle Cogeneration	GAS	51	MW	2 UNITS EACH 50 MW GE LM6000		6.98	LB/H			D			0	
*TX-0834	MONTGOMERY COUNTY POWER STATIOIN	3/30/2018	Combined Cycle	NATURAL		MMBTU/HR/UNIT	Two Mitsubishi M501GAC turbines (without fast start)	PIPELINE NATURAL GAS, GOOD COMBUSTION		TON/YR						0	
1 A-0834	POWER STATION	3/30/2018	Turbine COMBUSTION	UAS	203.	MMBTU/HRUNII	Two witsubism M301GAC turbines (without last start)	COMBUSTION	123.7	ION/IR		,				0	
			TURBINE GENERATOR														
			WITH DUCT-														
			FIRED HEAT RECOVERY														
	GREENSVILLE POWER		STEAM					Low sulfur/carbon fuel and good			AVG OF 3 TEST						
*VA-0325	STATION INTERNATIONAL STATION	6/17/2016	GENERATORS (3) GE LM6000PF-25	natural gas		MMBTU/HR	3227 MMBTU/HR CT with 500 MMBTU/HR Duct Burner, 3 on 1 configuration.	combustion pratices		LB/MMBTU	RUNS 3-HOUR		0	+		0	+
AK-0071	POWER PLANT	12/20/2010	Turbines (4)	Natural Gas	5990	hp ISO	Turbine-duct burner pairs exhaust through common stack	Good Combustion Practices	0.0066	LB/MMBTU	AVERAGE		D			0	
								Combustion Turbines EU IDs 5-8 use									
								good combustion practices involve increasing the residence time and excess									
								oxygen to ensure complete combustion									
AK-0073	INTERNATIONAL STATION POWER PLANT		Fuel Combustion	Natural Gas	5990	HP	EU IDs 5-8 Combined Cycle Natural Gas-fired Combustion Turbines rated at 59,900 hp (44.7 MW)	which in turn minimize particulates without an add-on control technology.	0.0066	LB/MMBTU	3-HOUR		0			0	
					-		,										
								USE PUBLIC UTILITY COMMISSION QUALITY NATURAL GAS W/	1								
	BLYTHE ENERGY PROJECT	r .	2 COMBUSTION	NATURAL		l		SULFUR CONTENT LESS THAN OR	1				.L				
CA-1144	111	4/25/2007	TURBINES COMBUSTION	GAS	170	MW	EACH TURBINE WILL PRODUCE 170 MW	EQUAL TO 0.5 GRAINS PER 100 SCF	6	lb/hr		6	1 T/YR	+		0	+
			TURBINE #1 (NORMAL						1								
			OPERATION, NO	NATURAL					1		12-MONTH						
CA-1192	AVENAL ENERGY PROJECT	T 6/21/2011	DUCT BURNING)	GAS	180	MW		USE PUC QUALITY NATURAL GAS	8.91	lb/hr	ROLLING AVG	-	0	+		0	+
								USE PIPELINE QUALITY NATURAL	1				1				1
	MORRO BAY POWER		COMBUSTION TURBINE	NATURAL				GAS, OPERATE DUCT BURNERS NO MORE THAN 4000 HRS PER YEAR	1		6-HR ROLLING AVG (NO DUCT			6-HR ROLLING AVG (W/ DUCT			
CA-1198	PLANT	9/25/2008	GENERATOR	GAS	180	MW		(12-MONTH ROLLING AVG BASIS)	11	lb/hr	BURNING)	13.3	3 lb/hr	BURNING)		0	
			COMBUSTION TURBINES						1								
CA-1211	COLUSA GENERATING STATION	2/11/2011	(NORMAL OPERATION)	NATURAL GAS	120	MW	TWO (2) NATURAL GAS FIRED TURBINES AT 172 MW EACH. BOTH TURBINES EQUIPPED WITH A 688 MMBTU/HR DUCT BURNER AND HRSG.	USE NATURAL GAS	12.6	llh/hr	STACK TEST						
CA-1211	STATION	3/11/2011		UAS	17.	191.99	TWO NATURAL GAS-FIRED COMBUSTION TURBINE-GENERATORS (CTGS) RATED	USE NATURAL GAS	13.3	tout	STACK TEST	· '		+	1		+
			COMBUSTION TURBINES				AT 154 MEGAWATT (MW, GROSS) EACH, TWO HEAT RECOVERY STEAM GENERATORS (HRSG), ONE STEAM TURBINE GENERATOR (STG) RATED AT 267		1								
	PALMDALE HYBRID		(NORMAL	NATURAL			MW, AND 251 ACRES OF PARABOLIC SOLAR-THERMAL COLLECTORS WITH		1		9-HR AVG (NO			9-HR AVG (W/			
CA-1212	POWER PROJECT	10/18/2011	OPERATION) NATURAL-GAS	GAS	150	MW	ASSOCIATED HEAT-TRANSFER EQUIPMENT	USE PUC QUALITY NATURAL GAS	0.0048	LB/MMBTU	DUCT BURNING	0.0049	LB/MMBTU	DUCT BURNING)	0	+
			FIRED,					NATURAL GAS QUALITY FUEL	1								
CO-0056	ROCKY MOUNTAIN ENERGY CENTER, LLC	5/2/2006	COMBINED- CYCLE TURBINE	NATURAL GAS	30	MW	ONE NEW COMBINED-CYCLE TURBINE IS BEING ADDED TO AN EXISTING FACILITY	ONLY AND GOOD COMBUSTION CONTROL PRACTICES	0.0074	LB/MMRTU		10	% OPACITY			0	1
	1	3,2,2000	Four combined	1	300		TACHATT.		0.00/4		AVE OVER				İ		1
*CO-0073	PUEBLO AIRPORT GENERATING STATION	7/22/2016	cycle combution turbines	natural gas	17	mmbtu/hr	Three GE, LMS6000 PF, natural gas-fired, combined cycle CTG, rated at 373 MMBtu per hour each, based on HHV and one (1) HRSG each with no Duct Burners	Use of pipeline quality natural gas and good combustor design	43	lb/hr	STACK TEST LENGTH		0			0	
	,	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1	L Kura Kura				Inc	1 7.3				-1	-	-	-1	

		IPERMIT ISSUANCE		IPRIMARY			Invenergy, LLC - Allegneny County Energ	ICONTROL METHOD	IEMISSION		IAVG TIME	IEMISSION		IAVG TIME	ISTANDARAD		TAVG TIME
RBLCID	FACILITY NAME	DATE	PROCESS NAME	FUEL	THROUGHPUT	THROUGHPUT UNIT	PROCESS NOTES	DESCRIPTION	LIMIT 1	UNIT	CONDITION	LIMIT 2	UNIT	CONDITION	EMISSION LIMIT	UNIT	CONDITION
			SIEMENS SGT6-														
			5000F COMBUSTION				THROUGHPUT IS FOR TURBINE ONLY WHEN FIRING NATURAL GAS										
			TURBINE #1 AND #2 (NATURAL				TURBINE: 2136 MMBTU/HR (2.095 MMCF/HR)										
			GAS FIRED) WITH 445 MMBTU/HR	ı			DUCT BURNER: 445 MMBTU/HR (0.436 MMCF/HR)										
	KLEEN ENERGY SYSTEMS,		NATURAL GAS	NATURAL			EMISSION RATES ARE FOR EACH COMBUSTION TURBINE FIRING NATURAL GAS,				W/OUT DUCT			W/ DUCT			
CT-0151	LLC		DUCT BURNER COMBINED	GAS NATURAL		I MMCF/H	NOT COMBINED.			11 lb/hr	BURNER 6 MIM BLOCK	15	5.2 lb/hr	BURNER		0	
FL-0265	HINES POWER BLOCK 4	6/8/2005	CYCLE TURBINE COMBUSTION	GAS	531	MW		CLEAN FUELS		10 % OPACITY	AVERAGE		0		1	% OPACITY	
			TURBINE,														
	LANGLEY GULCH POWER		CYCLE W/ DUCT	NATURAL			SIEMENS SGT6-5000F COMBUSTION TURBINE (NGCT, CCGT) FOR ELECTRICAL	GOOD COMBUSTION PRACTICES									
ID-0018	PLANT	6/25/2010	BURNER Electric Generation	GAS (ONLY)	2375.2	MMBTU/H	GENERATION, NOMINAL 269 MW AND 2.1466 MMSCF/HR Two combined cycle combustion turbines followed by HRSGs with capability for supplemental	(GCP)		0	SEE NOTE HOURLY		0			0	
*IL-0112	NELSON ENERGY CENTER	12/28/2010	Facility	Natural Gas	220	MW each	fuel firing in HRSG for each combustion turbine using duct burners.		0.	012 LB/MMBTU	AVERAGE		0			0	
			FOUR (4)				EACH TURBINE IS EQUIPED WITH DRY LOW NOX BURNERS, NATURAL GAS FIRED DUCT BURNERS, AND A HEAT RECOVERY STEAM GENERATOR										
			NATURAL GAS COMBINED				IDENTIFIED AS HRSG#. NOX EMISSIONS CONTROLLED BY SELECTIVE CATALYTIC REDUCTION SYSTEMS (SCR##) ALONG WITH CO AND VOC										
			CYCLE				EMISSSIONS CONTROLLED BY OXIDATION CATAYLST SYSTEMS (CAT##) IN										
*IN-0158	ST. JOSEPH ENEGRY CENTER, LLC	12/3/2012	COMBUSTION TURBINES	NATURAL GAS	230	MMBTU/H	EACH TURBINE. EACH STACK HAS CONTINUOUS EMISSIONS MONITORS FOR NOX AND CO. COMBINED NOMIAL POWER OUTPUT IS 1.350 MW.	GOOD CUMBUSTION PRACTICE AND FUEL SPECIFICATION		18 lb/hr	3 HOURS	0.00	78 LB/MMBTU	3 HOURS		D	
	PLAQUEMINE		(4) GAS TURBINES/DUCT	NATURAL			VISUAL INSPECTION FOR OPACITY ON A WEEKLY BASIS, STACK TESTS FOR PM, NOX, SO2, OPACITY, CO				HOURLY			ANNUAL.			
LA-0136	COGENERATION FACILITY	7/23/2008	BURNERS	GAS	287	MMBTU/H	EMISSION POINTS GT-500, -600, -700, -800.	USE OF CLEAN BURNING FUELS	3	3.5 lb/hr	MAXIMUM	1.	39 T/YR	MAXIMUM		0	
			GAS TURBINES -					USE OF CLEAN BURNING FUEL AND GOOD COMBUSTION			HOURLY			ANNUAL			NOT
LA-0192	CRESCENT CITY POWER	6/6/2005	5 187 MW (2)		200	MMBTU/H		PRACTICES WHILE FIRING NATURAL GAS: USE	1 2	9.4 lb/hr	MAXIMUM	128	3.8 T/YR	MAXIMUM		0	AVAILABLE
								OF PIPELINE QUALITY NATURAL GAS AND GOOD COMBUSTION									
								PRACTICES									
			COMBINED CYCLE TURBINE				Four GE 7FA combined cycle turbines, dry low NOx burners and selective catalytic reduction.	WHILE FIRING FUEL OIL: USE OF									
	NINEMILE POINT		GENERATORS				These limits are for each of the 4 turbines individually, while operating with the duct burners	ULTRA LOW SULFUR FUEL OIL			HOURLY			HOURLY			
LA-0254	ELECTRIC GENERATING PLANT	8/16/2011	(UNITS 6A & 6B)	NATURAL GAS	714	6 MMBTU/H	on. This permit is a modification to RBLC OH-0252 to remove hourly restrictions on duct burners.	AND GOOD COMBUSTION PRACTICES	26	i.23 lb/hr	AVERAGE W/O DUCT BURNER	33.	16 lb/hr	AVERAGE W/ DUCT BURNER		0	
			COGENERATION TRAINS 1-3 (1-10,	NATURAL			EACH COGEN TRAIN CONSISTS OF A 50 MW GE LM6000 PF SPRINT TURBINE AND A HEAT RECOVERY STEAM GENERATOR EQUIPPED WITH A 70 MM BTU/HR	USE OF NATURAL GAS AS FUEL AND GOOD COMBUSTION			HOURLY						
LA-0256	COGENERATION PLANT	12/6/2011	1 2-10, 3-10)	GAS	47:	MMBTU/H	DUCT BURNER. TWO GENERAL ELECTRIC (GE) F-CLASS ADVANCED COMBINED CYCLE TOWN GENERAL ELECTRIC (GE) F-CLASS ADVANCED COMBINED CYCLE TOWN GENERAL ELECTRIC (GE) F-CLASS ADVANCED COMBINED CYCLE TOWN GENERAL ELECTRIC (GE) F-CLASS ADVANCED COMBINED CYCLE TOWN GENERAL G	PRACTICES	3	.72 lb/hr	MAXIMUM		0			0	
			2 COMBINED-				COMBUSTION TURBINES (CTS) WITH A NOMINAL GENERATING CAPACITY OF										
			CYCLE COMBUSTION	NATURAL			725 MW, COUPLED WITH A HEAT RECOVERY STEAM GENERATOR (HRSG) EQUIPPED WITH DUCT BURNERS, DRY LOW-NOX BURNERS, SCR, OXIDATION	USE OF PIPELINE-QUALITY NATURAL GAS EXCLUSIVELY AND			AVERAGE OF THREE STACK						
*MD-0041	CPV ST. CHARLES	4/23/2014	TURBINES	GAS	72:	MEGAWATT	CATALYST CATALYST	NATURAL GAS EXCLUSIVELY AND GOOD COMBUSTION PRACTICE	0.	011 LB/MMBTU	TEST RUNS		0			0	
			2 COMBINED CYCLE														
			COMBUSTION TURBINES.					EXCLUSIVE USE OF PIPELINE			AVERAGE OF 3						
*MD-0042	WILDCAT POINT GENERATION FACILITY	4000	WITHOUT DUCT	NATURAL GAS	27.	MW		QUALITY NATURAL GAS AND EFFICIENT TURBINE DESIGN		5 1 lb/hr	STACK TEST RUNS						
*MD-0042	GENERATION FACILITY	4/8/2014	FIRING	GAS	270	MW	This is a combined-cycle combustion turbine with a non-fired heat recovery steam generator	EFFICIENT TURBINE DESIGN		5.1 lb/hr	RUNS	_	0			0	
			Combined cycle combustion turbine				(HRSG).										
*MI-0402	SUMPTER POWER PLANT	11/17/2011	w/ HRSG	Natural gas	130	MW electrical output	Natural gas-fired combustion turbine conversion to combined-cycle. Throughout is 2.237 MMBTU/H for each CTG		0.0	066 LB/MMBTU	TEST	7	7.4 lb/hr	TEST		0	
			Natural gas fueled combined cycle				Equipment is permitted as following flexible group (FG): FG-CTG1-2: Two natural gas fired CTGs with each turbine containing a heat recovery steam										
	MIDLAND COGENERATION		combustion turbine generators (CTG)				generator (HRSG) to operate in combined cycle. The two CTGs (with HRSG) are connected to one steam turbine generator. Each CTG is equpped with a dry low NOx (DLN) burner and a				EACH CTG; TEST			EACH CTG; TEST			
*MI-0405	VENTURE	4/23/2013	with HRSG	Natural gas	223	MMBTU/H	selective catalytic reduction (SCR) system. Natural gas fired CTG with DB for HRSG; 4 total.	Good combustion practices	0.	006 LB/MMBTU	PROTOCOL	0.0	12 LB/MMBTU	PROTOCOL		0	
							Technology A (4 total) is 2587 MMBTU/H design heat input each CTG.										
							Technology B (4 total) is 2688 MMBTU/H design heat input each CTG.										
							Permit was issued for either of two F Class turbine technologies with slight variations in										
			FGCCA or FGCCB-	1			emission rates. Applicant will select one technology. Installation is two separate CTG/HRSG trains driving one steam turbine electrical generator; Two 2X1 Blocks. Each CTG will be	Combustion air filters; efficient			TEST PROTOCOL (3 1						
*MI-0410	THETFORD GENERATING STATION	7.05.0010	4 nat. gas fired CTG w/ DB for HRSG	natural gas	250	MMBTU/H heat input, each CTG	rated at 211 to 230 MW (gross) output and the station nominal generating capacity will be up to 1.400 MW	combustion control; low sulfur natural ga-	s	066 LB/MMBTU	H TESTS IF POSSIBLE)						
1921-0410	STATEJN	//25/201:	w. DB for HRSG	naturai gas	258	r cacii CIG	This process is identified in the permit as FGCTGHRSG; it is 2 combined cycle natural gas-	Iuci.	0.0	LD/MINIDIU	(USSIBLE)		0			1	
			FG-CTGHRSG: 2				fired combustion turbine generators (CTGs) with Heat Recovery Steam Generators (HRSGs) equipped with duct burners for supplemental firing (EUCTGHRSG1 & EUCTGHRSG2 in										
	HOLLAND BOARD OF PUBLIC WORKS - EAST 5TH		Combined cycle CTGs with HRSGs			MMBTU/H for each	FGCTGHRSG). The total hours for both units combined for startup and shutdown shall not exceed 635 hours per 12-month rolling time period. Each CTGHRSG shall not exceed 647	Good combustion practices and the use of			TEST						
*MI-0412	STREET STREET	12/4/2013	CTGs with HRSGs with duct burners	natural gas	64	MMBTU/H for each CTGHRSG	MMRtu/hr on a fuel heat input basis	Good combustion practices and the use of pipeline quality natural gas.	0.	014 LB/MMBTU	PROTOCOL		0			0	
							steam generator and a natural gas-fired duct burner. Each										
							CT combusts natural gas as the primary fuel and very low- sulfur No. 2 fuel oil as a backup fuel. The use of fuel										
			TURBINE,				oil is limited to 1,200 hours per year and only during the										
			COMBINED CYCLE,				months of November through March, and is listed as a separate process. These units are listed	USE OF ONLY CLEAN-BURNING LOW-SULFUR									
NC-0101	FORSYTH ENERGY PLANT	9/29/2005	NATURAL GAS,	NATURAL GAS	1944	MMRTU/H	as a combined source (all three units) for each type of	FUELS AND GOOD COMBUSTION PRACTICES.		019 LB/MMBTU	based on 3-hour		0				
	CONSTRUCTOR PLANT	9/29/2003	TURBINE,	una	1844	- MIDI C/II	AMACA.	CLEAN FUELS - NATURAL GAS	0.	LIMINIDIU	average		1		1	1	1
NJ-0074	WEST DEPTFORD ENERGY	5/6/2009	COMBINED	NATURAL GAS	1729	8 MMFT3/YR		AND ULTRA LOW SULFUR (15PPM SULFUR) DISTILLATE OIL	15	.66 lb/hr			0			0	
		2.3200	Combined Cycle		.725		Natural Gas Usage <= 33,691 MMft^3/yr per 365 consecutive day period, rolling one	,							1		
	PSEG FOSSIL LLC		Combustion Turbine				day basis (per two turbines and two duct				AVERAGE OF						
*NJ-0081	SEWAREN GENERATING STATION	3/7/2014	-Siemens turbine without Duct Burner	Natural gas	3369	I MMCubic ft/yr	burners) The heat input rate of each Siemens combustion turbine will be 2,356 MMBtu/hr(HHV)	USE OF NATURAL GAS A CLEAN BURNING FUEL		13 lb/hr	THREE ONE HOUR TESTS		0			0	
		3///2014		1arana gas	3309	cuote te ji					LIOUR ILUIS		-1			1	

				IRRING BY			Invenergy, LLC - Allegheny County Energ		TELEPOOLON.		LANCEMBAR	TELEGRAPH.		IAVG TIME	ISTANDARAD		Live Time
RBLCID	FACILITY NAME	PERMIT ISSUANCE DATE	PROCESS NAME	FUEL	THROUGHPUT	THROUGHPUT UNIT	PROCESS NOTES	CONTROL METHOD DESCRIPTION	EMISSION LIMIT 1	UNIT	AVG TIME CONDITION	LIMIT 2	UNIT		STANDARAD EMISSION LIMIT	UNIT	AVG TIME CONDITION
			COMBINED CYCLE														
			COMBUSTION				Natural Gas Usage <= 33,691 MMft^3/yr										
			TURBINE				per 365 consecutive day period, rolling one										
	PSEG FOSSIL LLC		WITHOUT DUCT BURNER -				day basis (per two turbines and two duct burners)				AVERAGE OF						
	SEWAREN GENERATING		GENERAL				The heat input rate of each General Electric combustion turbine will be 2,312	Use of Natural Gas as a clean burning			THREE ONE						
'NJ-0081	STATION	3/7/2014	ELECTRIC	Natural Gas	336	1 MMCF/YR	MMBtu/hr(HHV) This is a 427 MW Siemens Combined Cycle Turbine with duct burner	fuel	12.	.7 lb/hr	HOUR TESTS		0			0	
							Heat Input rate of the turbine = 2276 MMbtu/hr (HHV)				AVERAGE OF						
	WEST DEPTFORD ENERGY		Combined Cycle Combustion Turbine				Heat Input rate of the Duct burner= 777 MMbtu/hr(HHV)				THREE ONE HOUR STACK						
NJ-0082	STATION	7/18/2014	without Duct Burner	Natural Gas	202	2 MMCF/YR	The fuel use of 20,282 MMCF/YR is for three turbines and three Duct burner.	Use of natural gas a clean burning fuel	1	0 lb/hr	TESTS		0			0	
NY-0095	CAITHNES BELLPORT ENERGY CENTER	5/10/2004	COMBUSTION TURBINE	NATURAL GAS	22	1 MMBUT/H	COMPINIED CVCLE WITH DUCT FIRING UP TO 494 MMPTUAL	LOW SULFUR FUEL	0.005	5 LB/MMBTU	NO DUCT BURNING	0.00	56 LB/MMBTU	W/DUCT BURNING			
¥1*0093	ENERGI CENTER	3/10/2000		UAS	22.	MMBCI/II	COMBINED CYCLE WITH DUCT FIRING UP TO 494 MMBTU/H Two Missibsin 2932 MMBtu/H combined cycle combustion turbines, both with 300 MMBtu/H duct burners, with dry low NOx combustors, SCR, and catalytic oxidizer. Will	EOW SCEPCK POLE	0.00.	S LB/MMBTC	BURNING	0.00	O LEMMBIC	BUKINENG			
			2 Combined Cycle Combustion				MMBtu/H duct burners, with dry low NOx combustors, SCR, and catalytic oxidizer. Will install either 2 Siemens or 2Mitsubishi, not both (not determined).										
	OREGON CLEAN ENERGY		Turbines-Siemens,			MMSCF/rolling 12-	Short term limits are different with and without duct burners.							PER ROLLING 12			
OH-0352	CENTER	6/18/2013	without duct burners	Natural Gas	5156	0 months	This process without duct burners.	clean burning fuel, only natural gas	13.	.3 lb/hr		61	.3 T/YR	MONTHS		0	
							Two Mitsubishi 2932 MMBtu/H combined cycle combustion turbines , both with 300										
			2 Combined Cycle				MMBtu/H duct burners, with dry low NOx combustors, SCR, and catalytic oxidizer. Will										
	OREGON CLEAN ENERGY		Combustion Turbines-Mitsubishi				install either 2 Siemens or 2Mitsubishi, not both (not determined). Short term limits are different with and without duct burners.							PER ROLLING 12			
OH-0352	CENTER	6/18/2013	without duct burners	Natural Gas	479	7 MMSCF/rolling 12-MO	Four GE 7FA combined cycle turbines, dry low NOx burners and selective catalytic reduction.	clean burning fuel, only natural gas	11.	3 lb/hr		44	.2 T/YR	MONTHS		0	
			Turbines (4) (model				Four GE 7FA combined cycle turbines, dry low NOx burners and selective catalytic reduction. These limits are for each of the 4 turbines individually, while operating with the duct burners										
	DUKE ENERGY HANGING		GE 7FA) Duct	NATURAL			off. This permit is a modification to RBLC OH-0252 to remove hourly restrictions on duct	Burning natural gas in an efficient						PER ROLLING 12			
OH-0356	ROCK ENERGY	12/18/2012	Burners Off	GAS	11	2 MW	burners.	combustion turbine	1	5 lb/hr		87	.2 T/YR	MONTHS		0	
	PSO SOUTHWESTERN		GAS-FIRED					USE OF LOW ASH FUEL (NATURAL		1		1					
K-0117	POWER PLT	2/9/2007	TURBINES					GAS) AND EFFICIENT COMBUSTION	N 0.009	3 LB/MMBTU			0			0	
			COMBINED CYCLE							1		1					
			COGENERATION	NATURAL						1		1					
OK-0129	CHOUTEAU POWER PLANT	1/23/2009	>25MW COMBINED	GAS	183	2 MMBTU/H	SIEMENS V84.3A	NATURAL GAS FUEL	6.5	9 lb/hr	3-H AVG	0.00	5 LB/MMBTU	24-H AVG		0	
			CYCLE NATURAL														
			GAS-FIRED ELECTRIC														
			GENERATING	NATURAL													
OR-0048	CARTY PLANT	12/29/2010	UNIT	GAS	286	6 MMBTU/H		CLEAN FUEL	2.	.5 LB/MMCF		0.00	3 LB/MMBTU			0	
	MOXIE ENERGY LLC/PATRIOT		Combined Cycle Power Blocks 472				Two natural-gas-fired combined cycle powerblocks where each powerblock consists of a										
PA-0286	GENERATION PLT	1/31/2013	MW - (2)	Natural Gas		0	combustion turbine and heat recovery steam generator with duct burner.		0.005	7 LB/MMBTU			54 T/YR	TOTAL PM		0	
	BERKS HOLLOW ENERGY		Turbine, Combined								12-MONTH ROLLING						
*PA-0296	ASSOC LLC/ONTELAUNEE	12/17/2013		Natural Gas	30-	6 MMBtu/hr	Equipped with SCR and Oxidation Catalyst The plant will be designed to generate 1,350 nominal megawatts of power. There are two		48.5	6 T/YR	TOTAL		10 lb/hr			0	
							The plant will be designed to generate 1,350 nominal megawatts of power. There are two configuration scenarios: either four Siemens SGT6-5000F CTGs in combined-cycle mode										
							(Scenario A) or four GE Frame 7FA CTGs in combined cycle mode (Scenario B). Scenario B	use of low ash fuel (natural gas or low									
TX-0590	KING POWER STATION	8/5/2010		natural gas	13:	0 MW	also includes one or two auxiliary boilers.	sulfur diesel as a backup)	11.	.1 lb/hr		15	.8 lb/hr			0	
TX-0618	CHANNEL ENERGY CENTER LLC	10/15/2012	Combined Cycle	natural gas	1:	10 MW	The turbine is a Siemens 501F rated at a nominal 180 MW and the duct burner will have a maximum design heat input of 475 MMBtu/hr.	good combustion and the use of gaseous fuel	,	7 lb/hr			0			0	
174 0010	CENTERCESC	10/13/2012	Turonic	natural gas			Inatural gas-fired combined cycle turbine generator with a heat recovery steam generator	1101	*								
	DEER PARK ENERGY		Combined Cycle				equipped with a duct burner. The turbine is a Siemens 501F rated at a nominal 180 megawatts and the DB will have a maximum design rate capability of 725 million British thermal units	good combustion and the use of natural									
TX-0619	CENTER	9/26/2012		natural gas	11	0 MW	per hour	gas	2	7 lb/hr			0			0	
							The three combustion turbine generators (CTG) will be the General Electric 7FA, each with a										
							maximum base-load electric power output of approximately 195 megawatts (MW). The steam										
TX-0620	ES JOSLIN POWER PLANT	9/12/2012	Combined cycle gas	natural gas		5 MW	turbine is rated at approximately 235 MW. This project also includes the installation of two	good combustion and natural gas as fuel		8 lb/hr	PER TURBINE					0	
1 A-0020		9/12/2012	Combined-cycle gas	naturai gas	15	3 NW	emergency generators, one fire water pump, and auxiliary equipment. No duct burners.	good combustion and natural gas as fuel	· '	8 it/mr	PER TURBINE		0	_		0	+
*TX-0730	COLORADO BEND ENERGY CENTER	4/1/2015	turbine electric	l.,		10 MW	combined cycle power plant that uses two combustion turbines and one steam turbine, model GE 7HA 02			3 Ib/hr							
1A-0/30	CENTER	4/1/2013	Combined Cycle	natural gas	110	IO M W	GE /RA.92	efficient combustion, natural gas fuel	4	3 10/ftr	_	+	U	+		0	+
	L. O. P. MOUNTE		Turbines (>25				Two power configuration options authorized										
*TX-0751	EAGLE MOUNTAIN STEAM ELECTRIC STATION	6/18/2015	MW) – natural gas	natural gas	,	0 MW	Siemens 倓 231 MW + 500 million British thermal units per hour (MMBtu/hr) duct burner GE 倓 210 MW + 349.2 MMBtu/hr duct burner		35.4	7 lb/hr		81	38 T/YR			0	
									33.4			01.					
	LON C. HILL POWER		Combined Cycle Turbines (>25				Two power configuration options authorized Siemens â€* 240 MW + 250 million British thermal units per hour (MMBtu/hr) duct burner	Good combustion practices and use of		1		1					
*TX-0767	STATION	10/2/2015	MW)	natural gas	15	5 MW	GE ⢓ 195 MW + 670 MMBtu/hr duct burner	pipeline quality natural gas	1	6 lb/hr		109	.5 T/YR			0	
			COMBINED CYCLE TURBINE								3 HR AVG. (WITHOUT			3 HR. AVG. (WITH DUCT			
	WARREN COUNTY POWER		& DUCT				Emissions are for one of three units (Mitsubishi natural gas-fired combustion turbine (CT)	Natural Gas only, fuel has maximum			DUCT BURNER			BURNER			
VA-0315	PLANT - DOMINION	12/17/2010	BURNER, 3	Natural Gas	29	6 MMBTU/H	generator, Model M501 GAC).	sulfur content of 0.0003% by weight.		8 lb/hr	FIRING)		4 lb/hr	FIRING)		0	
	GATEWAY COGENERATION 1, LLC -		COMBUSTION				Burns primarily natural gas but has the capacity to burn up to 500 hours of ultra low sulfur	Clean-burning fuels and good combustion	n	1							
VA-0319	SMART WATER PROJECT	8/27/2012	TURBINES, (2) COMBUSTION	Natural Gas	5	3 MMBTU/H	diesel fuel (ULSD) as backup.	practices.		5 lb/hr	3 H AVG		0	2.11		0	
	BRUNSWICK COUNTY		COMBUSTION TURBINE				Three (3) Mitsubishi M501 GAC combustion turbine generators with HRSG duct burners	Low sulfur/carbon fuel and good		1	3 H AVG/WITHOUT			3 H AVG/WITHOUT			
*VA-0321	POWER STATION	3/12/2013	GENERATORS, (3)	Natural Gas	344	2 MMBTU/H	(natural gas-fired).	combustion practices.	0.003	3 LB/MMBTU	DUCT BURNING	3 9	.7 lb/hr	DUCT BURNING		0	
			GE 7FA COMBUSTION							1		1					
			TURBINE & amp;							1							
	BP CHERRY POINT		HEAT RECOVERY STEAM	NATURAL			THREE IDENTICAL CT & HSRG UNITS. EACH CT WILL HAVE AN ANNUAL AVERAGE CAPACITY RATING OF 1614 MMBTU/HR. EACH HRSG DUCT BURNER	LIMIT FUEL TYPE TO NATURAL		1							
WA-0328	COGENERATION PROJECT	1/11/2005	GENERATOR	GAS	11	4 MW	WILL HAVE A MAXIMUM FIRING RATE OF 105 MMBTU/HR.	GAS	1	7 lb/hr			0			0	*SEE NOTES
			COMBUSTION TURBINE #2								12-MONTH						
			(NORMAL							1	ROLLING AVG						
	VICTORVILLE 2 HYBRID		OPERATION, NO							1	(NO DUCT	1					
		3/11/2010	DUCT BURNING)	GAS	1:	4 MW	154 MW Combined Cycle Combustion Turbine Generator	PUC QUALITY NATURAL GAS	1	2 lb/hr	BURNING) 12 MONTH	+	0			0	1
CA-1191	POWER PROJECT					1	I .	1	1	1	ROLLING		1	1	1	1	1
	GARRISON ENERGY							Fuel Usage Restriction to natural gas and	1								1
CA-1191 DE-0024		1/30/2013	Unit 1	Natural Gas	220	0 million BTUs		Fuel Usage Restriction to natural gas and low sulfur distillate oil	120.	.4 T/YR	AVERAGE		0			0	
DE-0024	GARRISON ENERGY		Combustion turbine		220	0 million BTUs	two identical Siemens SGT6-5000F combined cycle turbines without duct firing, each at 2258 mmBtu/fir generating approx. 300 MW each.	low sulfur distillate oil	120.	4 T/YR 01 LB/MMBTU			0 .1 T/YR	12-MONTH ROLLING		0	

		PERMIT ISSUANCE	1	PRIMARY				CONTROL METHOD	EMISSION		AVG TIME	EMISSION		AVG TIME	STANDARAD		AVG TIME
RBLCID	FACILITY NAME	DATE DATE	PROCESS NAME		THROUGHPUT	THROUGHPUT UNIT			LIMIT 1	UNIT	CONDITION	LIMIT 2	UNIT	CONDITION	EMISSION LIMIT	UNIT	CONDITION
		1	Combined Cycle											1			1
			Refrigeration														
	SABINE PASS LNG		Compressor					Good combustion practices and fueled by			HOURLY						
A-0257	TERMINAL	12/6/2011	Turbines (8)	natural gas	286	MMBTU/H	GE LM2500+G4	natural gas	2.08	lb/hr	MAXIMUM	0			0		
							Throughput is 2,237 MMBTU/H for each CTG										
							n :										
			Natural gas fueled				Equipment is permitted as following flexible group (FG):										
			combined cycle combustion turbine				FG-CTG1-2: Two natural gas fired CTGs with each turbine containing a heat recovery steam generator (HRSG) to operate in combined cycle. The two CTGs (with HRSG) are connected				EACH CTG:						
	MIDLAND COGENERATION		generators (CTG)				to one steam turbine generator. Each CTG is equipped with a dry low NOx (DLN) burner and a				TEST						
'MI-0405	VENTURE		with HRSG	Natural gas	2237	MMBTU/H	to one steam turbine generator. Each CTO is equipped with a dry low NOX (DLN) burner and a selective catalytic reduction (SCR) system.	Good combustion practices	0.006	LB/MMBTU	PROTOCOL						
	TETTORE	472372011	with Theory	Tructurur gust	22.77	MINIDI CITI	The plant will be designed to generate 1,350 nominal megawatts of power. There are two	Cood communion practices	0.000	LD/MINDTO	TROTOCOL				· ·		
							configuration scenarios: either four Siemens SGT6-5000F CTGs in combined-cycle mode	use low ash fuel (natural gas or low sulfur									
							(Scenario A) or four GE Frame 7FA CTGs in combined cycle mode (Scenario B). Scenario B										
TX-0590	KING POWER STATION	8/5/2010	Turbine	natural gas	1350	MW	also includes one or two auxiliary boilers.	practices	11.1	lb/hr		19.8	lb/hr		0		
							The three combustion turbine generators (CTG) will be the General Electric 7FA, each with a										
							maximum base-load electric power output of approximately 195 megawatts (MW). The steam										
			Combined cycle gas				turbine is rated at approximately 235 MW. This project also includes the installation of two										
TX-0620	ES JOSLIN POWER PLANT	9/12/2012		natural gas	195	MW	emergency generators, one fire water pump, and auxiliary equipment. No duct burners.	good combustion and natural gas as fuel	18	lb/hr	PER TURBINE	0			0		
	COLOR LDO DEND EL		Combined-cycle gas				The state of the s										
TV 0720	COLORADO BEND ENERGY CENTER	4/1/2015	turbine electric		1100	Low.	combined cycle power plant that uses two combustion turbines and one steam turbine, model GE 7HA 02		4.7	lb/hr		_					
TX-0730	CENTER	4/1/2013	generating facility COMBUSTION	natural gas	1100	MW	GE /HA.U2	efficient combustion, natural gas fuel	43	Ib/hr	2.11	0		2.11	- 0	-	
	BRUNSWICK COUNTY		TURBINE	1			The COMPartition Man CAC contrain to the contraint HTCC 1	Low sulfur/carbon fuel and good	1	1	3 H AVG/WITHOUT	1		AVG/WITHOUT	1		1
VA-0321	POWER STATION	3/12/2013	GENERATORS, (3)	Notes Co.	2442	MMBTU/H	Three (3) Mitsubishi M501 GAC combustion turbine generators with HRSG duct burners (natural gas-fired).	combustion practices.	0.0022	LB/MMBTU	DUCT BURNING	0.7	lb/hr	DUCT BURNING			
VA-0321	CHEYENNE PRAIRIE	3/12/2013	Combined Cycle	Naturai Gas	3442	MMB1U/II	(naturai gas-irreu).	combustion practices.	0.0033	LB/MMB1U	3-HOUR	9.7	10/Hr	CALENDAR			
WY-0070	GENERATING STATION	8/28/2012	Turbine (EP01)	Natural Gas	40	MW		good combustion practices	4	llb/hr	AVERAGE	17.5	T/YR	YEAR			
11 1-0070	GEREICHING STITTION	0.202012	ruionic (Li 01)	Tutturur Gub				good companion practices	,	10-11	1-hr average; Duct	17.0		1-hr average; Duct	· · · · · · · · ·		
	Astoria Energy LLC		Combustion Turbine	Natural Gas	1000	MW		Clean Fuel	0.0098	LB/MMBTU	Burners Off	12.9	lb/hr	Burners Off			
	Gibson County Generation,																
	LLC		Combustion Turbine	Natural Gas	417	MW			0.0048	LB/MMBTU	24-hr average						
	Pioneer Valley Energy Center		Combustion Turbine	Natural Gas	2542	MMBtu/hr			0.004	LB/MMBTU		9.8	lb/hr				
	Russell City Energy Company,																
	LLC		Combustion Turbine	Natural Gas	2038.6	MMBtu/hr			7.5	lb/hr		0.0036	lb/MMBtu				
	L					l											
	Tenaska Partners LLC UGI Development Co/ Hunlock		Combustion Turbine	Natural Gas	3147	MMBtu/hr			11.8	lb/hr		0.0039	lb/MMBtu				
	Creek	·		Natural Gas	471.2	MMBtu/hr			0.0141	LB/MMBTU							
	Hawkeye Generating, LLC			Natural Gas		MW				LB/MMBTU		211.86	T/VD				
	Huntington Beach Energy			Naturai Gas	013	IVI VV			0.011	LIMMITO		211.00	1/1K				
	Project			Natural Gas	020	MW (net)			4.5	lb/hr							
	Tioject			Natural Gas	737	IVI W (IICI)			4.0	IOII							
	Hess Newark Energy Center		Combustion Turbine	Natural Gas	2320	MMBtu/hr			11	lb/hr							
	York Energy Center Block 1				1574	MMBtu/hr			0.0141	LB/MMBTU	hourly basis						
	Liberty Electric Power, LLC				1954	MMBtu/hr			0,0141	LB/MMBTU				1			1
	Footprint Power Salem Harbor	t	—		1,554				5.0141		1-hr average; Duct			1-hr average; Duct			
	Development LP		Combustion Turbine	Natural Gas	346	MW		Clean Fuel	8.8	lb/hr	Burners Off	0.0071	lb/MMBtu	Burners Off	1		1
	Footprint Power Salem Harbor										1-hr average; Duct						
	Development LP		Combustion Turbine	Natural Gas	346	MW		Clean Fuel	0.041	lb/MW-hr	Burners Off						
											30-day rolling						
	PacifiCorp Energy		Block 1 CT	Natural Gas					10.8	lb/hr	average						
	n :50 n		DI LA CT								30-day rolling						
	PacifiCorp Energy		Block 2 CT	Natural Gas	629	MW			14	lb/hr	average						
	Woodbridge Energy Center (CPV Shore, LLC)		1	Natural Gas	2 207	MMBtu/hr				lb/hr		1		1	1		1
	(Cr v Shore, LLC)			ivaturai Gas	2,307	MINISTU/hr			12.1	10/mf	-			+			
	Hummel Station LLC		Combustion Turbine	Notuml Gas	2 254 00	MMBtu/hr			17.2	lb/hr		1		1	1		1
	Trummer Station LLC		Combustion Lurbine	i vacurai Gas	2,254.00	INTINIDIU/III			17.3	torif	1	<u> </u>		+	-	-	-
	Hummel Station LLC		Combustion Turbine	Natural Gas	2 254 00	MMBtu/hr			14	lb/hr							1
	THE STATE OF THE S	-	Compussion rurbine	- sucurar Gas	2,234.00			Combusting commercially available,	14	and and	1	-		+	-		
			1	1				pipeline natural gas in the turbines and	1	1		1		1	1		1
	Cricket Valley Energy Center		Combustion Turbine	Natural Gas	1000	MW		duct burners	0.006	LB/MMBTU	1-hr average						1
	Gibson County Generation,				1					l				1			
	LLC		Combustion Turbine	Natural Gas	417	MW			28.9	lb/hr		0.0088	lb/MMBtu	24-hr average	1		1
		1			1						average of 3 test				t		
	York Energy Center Block 2	6/15/2015				MMBtu/hr	firing NG without duct burner			lb/hr							

		PERMIT ISSUANCE		PRIMARY				CONTROL METHOD	EMISSION		AVG TIME	EMISSION		AVG TIME	STANDARAD		AVG TIME
RBLCID	FACILITY NAME KILLINGLY ENERGY	DATE	PROCESS NAME Natural Gas w/Duct	FUEL	THROUGHPUT	THROUGHPUT UNIT	PROCESS NOTES	DESCRIPTION	LIMIT 1	UNIT	CONDITION	LIMIT 2	UNIT	CONDITION	EMISSION LIMIT	UNIT	CONDITION
CT-0161	CENTER	6/30/2017	Firing	Natural Gas	2639	MMBtu/hr	Duct burner MRC is 946 MMbtu/hr	Good Combustion	0.00	5 LB/MMBTU			0		0		
LA-0313	ST. CHARLES POWER STATION	8/31/2016	SCPS Combined Cycle Unit 1A	Natural Gas	3625	MMBTU/hr		Good combustion practices and clean burning fuels (natural gas)	17.5	2 LB/H	HOURLY MAXIMUM	73.3	5 T/YR	ANNUAL MAXIMUM	0		
LA-0313	ST. CHARLES POWER STATION		SCPS Combined	V . 10		MMBTU/hr		Good combustion practices and clean	17.5	2 I B/H	HOURLY MAXIMUM	72.2	5 T/YR	ANNUAL MAXIMUM			
			Cycle Unit 1B FGCTGHRSG (2	Natural Gas			There are 2 combined cycle natural gas-fired combustion turbine generators (CTGs)	burning fuel (natural gas) Good Combustion Practices, inlet air			TEST	/3.3	S I/YK	MAXIMUM			+
MI-0423	INDECK NILES, LLC HOLLAND BOARD OF	1/4/2017	Combined Cycle FGCTGHRSG (2	Natural gas	8322	MMBTU/H	with heat recovery steam generators (HRSG) identified as EUCTGHRSG1 & Two combined cycle natural gas fired combustion turbine generators (CTGs) with	conditioning, and the use of pipeline Good combustion practices and the use of		8 LB/H	PROTOCOL TEST	-	0	_	0		+
MI-0424	PUBLIC WORKS - EAST 5TH	12/5/2016	Combined cycle	Natural gas	554	MMBTU/H, each	heat recovery steam generators (HRSG) (EUCTGHRSG10 & EUCTGHRSG11 in	pipeline quality natural gas.	0.01	4 LB/MMBTU	PROTOCOL		0		0		
*MI-0432	NEW COVERT GENERATING FACILITY	7/30/2018	FG-TURB/DB1-3 (3 combined cycle	Natural gas	1230	MW	Three (3) combined-cycle combustion turbine (CT) / heat recovery steam generator (HRSG) trains. Each CT is a natural gas fired Mitsubishi model 501G, equipped	Use clean fuel (natural gas) and good combustion practices.	10	7 I B/H	HOURLY; EACH CT/HRSG TRAIN	I .	0				
	MEC NORTH, LLC AND		EUCTGHRSG				A combined-cycle natural gas-fired combustion turbine generator (CTG) with heat	Good combustion practices, inlet air									
*MI-0433	MEC SOUTH LLC MEC NORTH, LLC AND	6/29/2018	(South Plant): A EUCTGHRSG	Natural gas	500	MW	recovery steam generator (HRSG) in a 1x1 configuration with a steam turbine Nominal 500 MW electricity production. Turbine rating of 3,080 MMBTU/hr	conditioning, and the use of pipeline Good combustion practices, inlet air	19.	.1 LB/H	HOURLY	<u> </u>	0	_	- 0		+
*MI-0433	MEC SOUTH LLC BELLE RIVER COMBINED	6/29/2018	(North Plant): A	Natural gas	500	MW	(HHV) and HRSG duct burner rating of 755 MMBTU/hr (HHV).	conditioning, and the use of pipeline	19.	1 LB/H	HOURLY: EACH	-	0	HOURLY; EACH	0		
*MI-0435	CYCLE POWER PLANT	7/16/2018	FGCTGHRSG (EUCTGHRSG1	Natural gas	0		Two (2) combined-cycle natural gas-fired combustion turbine generators, each with a heat recovery steam generator (CTGHRSG).	Good combustion practices, inlet air conditioning and the use of pipeline	1	6 LB/H	UNIT	12.	2 LB/H	UNIT W/O DUCT	0		
NJ-0085	MIDDLESEX ENERGY CENTER, LLC		Combined Cycle		4000	1.6-		COMPLIANCE BY STACK TESTING	18	.3 LB/H	AV OF THREE ONE H STACK						
	MIDDLESEX ENERGY		Combustion Turbine Combined Cycle	natural gas				USE OF NATURAL GAS A CLEAN			AV OF THREE		U				+
NJ-0085	CENTER, LLC TENASKA PA	7/19/2016	Combustion Turbine Large combustion	Natural Gas	8040	H/YR	This process entry is for operations with the duct burner. Limits entered are for each	BURNING FUEL	11.	7 LB/H	ONE H STACK	-	0		0		
*PA-0306	PARTNERS/WESTMORELA	2/12/2016	turbine	Natural Gas	0		turbine.	Good combustion practices	0.003	9 LB/MMBTU		11.	8 LB/HR		0		
*PA-0310	CPV FAIRVIEW ENERGY CENTER	0/2/2016	Combustion turbine and HRSG with duc	Notural Gas	2229	MMBtu/hr	Emission limits are for each turbine operating with duct burner and do not include startup/shutdown emissions. Tons per year limits is a cumulative value for all three	Low sulfur fuel, good combustion practices	0.00	5 LB/MMBTU		121	5 TONS	12-MONTH ROLLING BASIS			
	CPV FAIRVIEW ENERGY		Combustion turbine	Naturar Gas	3336	MINIDIANI	Emission limits are for each turbine fueled by NG and operating without duct	Low sulfur fuels and good combustion				131.	JONS	ROLLENG BASIS			+
*PA-0310	CENTER GAINES COUNTY POWER	9/2/2016	and HRSG without Combined Cycle	Natural gas NATURAL	0		burner being fired and do not include startup/shutdown emissions. Four Siemens SGT6-5000F5 natural gas fired combustion turbines with HRSGs and	Pineline quality natural one; good	0.006	8 LB/MMBTU		-	0		0		+
TX-0819	PLANT	4/28/2017	Turbine with Heat	GAS	426	MW	Steam Turbine Generators	combustion practices		0			0		0		
*VA-0325	GREENSVILLE POWER STATION	6/17/2016	COMBUSTION TURBINE	natural gas	3227	MMBTU/HR	3227 MMBTU/HR CT with 500 MMBTU/HR Duct Burner, 3 on 1 configuration.	Pipeline Quality Natural Gas	0.003	9 LB/MMBTU	AVG OF 3 TEST RUNS	14	I LB/H		0		
	INTERNATIONAL STATION		GE LM6000PF-25								3-HOUR	1					
AK-0071	POWER PLANT INTERNATIONAL STATION	12/20/2010	Turbines (4) GE LM6000PF-25	Natural Gas		hp ISO	Turbine-duct burner pairs exhaust through common stack	Good Combustion Practices	0.006		AVERAGE 3-HOUR	<u> </u>	0	+	0		+
AK-0071	POWER PLANT	12/20/2010	Turbines (4) COMBUSTION	Natural Gas	59900	hp ISO	Turbine-duct burner pairs exhaust through common stack	Good Combustion Practices	0.006	6 LB/MMBTU	AVERAGE		0		0		
			TURBINE #2														
			(NORMAL OPERATION,								12-MONTH ROLLING AVG						
	VICTORVILLE 2 HYBRID		WITH DUCT	NATURAL							(W/ DUCT						
CA-1191	POWER PROJECT	3/11/2010	BURNING) COMBUSTION	GAS	154	MW	154 MW Combined Cycle Combustion Turbine Generator	PUC QUALITY NATURAL GAS	1	8 lb/hr	BURNING)		0		0		
			TURBINE #1 (NORMAL								12-MONTH						
			OPERATION,								ROLLING AVG						
CA-1191	VICTORVILLE 2 HYBRID POWER PROJECT	2/11/2010	WITH DUCT BURNING)	NATURAL GAS	154	MW	154 MW Combined Cycle Combustion Turbine Generator	USE PUC QUALITY NATURAL GAS	Ι.	0 11.4	(W/ DUCT BURNING)	l .					
CA-1191	POWER PROJECT	3/11/2010	COMBUSTION	UAS	134	MW	134 M W Combined Cycle Compussion Turbine Generator	USE FOC QUALITY NATURAL GAS	· '	8 ID/III	BURNING	<u> </u>	U				+
			TURBINE #2 (NORMAL														
			OPERATION,														
CA-1192	AVENAL ENERGY PROJECT	6/21/2011	WITH DUCT BURNING)	NATURAL GAS	180	MW		USE PUC QUALITY NATURAL GAS	11.7	8 lb/hr	12-MONTH ROLLING AVG		0		0		
								USE PIPELINE QUALITY NATURAL									
			COMBUSTION					GAS, OPERATE DUCT BURNERS NO			6-HR ROLLING			6-HR ROLLING			
CA-1198	MORRO BAY POWER PLANT	9/25/2008	TURBINE GENERATOR	NATURAL GAS	180	MW		MORE THAN 4000 HRS PER YEAR (12-MONTH ROLLING AVG BASIS)	١,	1 llb/br	AVG (NO DUCT BURNING)	13	3 llb/br	AVG (W/ DUCT BURNING)			
C.1-1150	12201	7/23/2000	GENERATION	Corto	100		TWO NATURAL GAS-FIRED COMBUSTION TURBINE-GENERATORS (CTGS) RATED AT 154 MEGAWATT (MW. GROSS) EACH, TWO HEAT	(12 MONTH ROLLING TVG BIDE)		110111	DOIGHING)	15.	7 10 11	DOK! LIKE)			
			COMBUSTION				RECOVERY STEAM GENERATORS (HRSG), ONE STEAM TURBINE										
	PALMDALE HYBRID		TURBINES (NORMAL	NATURAL			GENERATOR (STG) RATED AT 267 MW, AND 251 ACRES OF PARABOLIC SOLAR-THERMAL COLLECTORS WITH ASSOCIATED HEAT-TRANSFER				9-HR AVG (NO			9-HR AVG (W/			
CA-1212	POWER PROJECT	10/18/2011	OPERATION)	GAS	154	MW	EQUIPMENT	USE PUC QUALITY NATURAL GAS	0.004	8 LB/MMBTU	DUCT BURNING	0.004	LB/MMBTU	DUCT BURNING	0		
	GARRISON ENERGY							Fuel Usage Restriction to natural gas and			12 MONTH ROLLING						
DE-0024	CENTER	1/30/2013	Unit 1	Natural Gas	2260	million BTUs		low sulfur distillate oil	120	4 TONS/Y	AVERAGE		0		0		
			Electric Generation				Two combined cycle combustion turbines followed by HRSGs with capability for				HOURLY			1			
*IL-0112	NELSON ENERGY CENTER	12/28/2010		Natural Gas	220	MW each	supplemental fuel firing in HRSG for each combustion turbine using duct burners. EACH TURBINE IS EQUIPED WITH DRY LOW NOX BURNERS, NATURAL		0.00	6 LB/MMBTU	AVERAGE		0	1	0		+
							GAS FIRED DUCT BURNERS, AND A HEAT RECOVERY STEAM										
			FOUR (4) NATURAL GAS				GENERATOR IDENTIFIED AS HRSG#. NOX EMISSIONS CONTROLLED BY SELECTIVE CATALYTIC REDUCTION SYSTEMS (SCR##) ALONG WITH	1			1			1			
			COMBINED				CO AND VOC EMISSSIONS CONTROLLED BY OXIDATION CATAYLST										
	ST. JOSEPH ENEGRY		CYCLE COMBUSTION	NATURAL			SYSTEMS (CAT##) IN EACH TURBINE. EACH STACK HAS CONTINUOUS EMISSIONS MONITORS FOR NOX AND CO. COMBINED NOMIAL POWER	GOOD COMBUSTION PRACTICE									
*IN-0158	CENTER, LLC	12/3/2012	TURBINES	GAS	2300	MMBTU/H	OUTPUT IS 1.350 MW.	AND FUEL SPECIFICATION WHILE FIRING NATURAL GAS: USE	1	8 lb/hr	3 HOURS	0.007	8 LB/MMBTU	3 HOURS	0		
								OF PIPELINE QUALITY NATURAL									
								GAS AND GOOD COMBUSTION PRACTICES									
			COMBINED														
	NINEMILE POINT		CYCLE TURBINE GENERATORS				TURBINES ALSO PERMITTED TO BURN NO. 2 FUEL OIL AND ULTRA LOW SULFUR DIESEL.	WHILE FIRING FUEL OIL: USE OF ULTRA LOW SULFUR FUEL OIL			HOURLY			HOURLY			
LA-0254	ELECTRIC GENERATING	8/16/2011	(UNITS 6A & amp;	NATURAL		Lammin		AND GOOD COMBUSTION			AVERAGE W/O	33.10		AVERAGE W/ DUCT BURNER			
LA-0254	PLANT	8/16/2011	6B) COGENERATION	IGAS	7146	MMBTU/H	FUEL OIL USE IS LIMITED TO 1000 HOURS PER YEAR. EACH COGEN TRAIN CONSISTS OF A 50 MW GE LM6000 PF SPRINT	PRACTICES USE OF NATURAL GAS AS FUEL	26.2	.5 11b/hr	DUCT BURNER	33.1	b Hb/hr	DUCT BURNER	1 0		+
LA-0256	COGENERATION PLANT	12/6/2011	TRAINS 1-3 (1-10, 2-10, 3-10)	NATURAL GAS	475	MMBTU/H	TURBINE AND A HEAT RECOVERY STEAM GENERATOR EQUIPPED WITH A 70 MM BTU/HR DUCT BURNER.	AND GOOD COMBUSTION PRACTICES	3.7	12 llb/br	HOURLY MAXIMUM		0				
L. 1-0230	COGLARATIONTLANT	12/6/2011	Combined Cycle		4/3		WITTE TO SIM DIOTIK DOCT BORNER.	I KI CI ICES	3./	Z I I I I I	- AAAMON			1			
	SABINE PASS LNG		Refrigeration Compressor					Good combustion practices and fueled by			HOURLY						
LA-0257	TERMINAL	12/6/2011	Turbines (8)	natural gas	286	MMBTU/H	GE LM2500+G4	natural gas	2.0	18 lb/hr	MAXIMUM 1 HR AVG/DO		0	LUB AVC/PC	0		
	SALEM HARBOR STATION		Combustion Turbine				two 315 MW (nominal) GE Energy 7F Series 5 Rapid Response Combined Cycle Combustion Turbines with Duct Burners and 31 MW (estimated) steam turbine				NOT APPLY			1 HR AVG/DO NOT APPLY			
*MA-0039	REDEVELOPMENT	1/30/2014	with Duct Burner	Natural Gas	2449	MMBtu/hr	generators		0.006	2 LB/MMBTU	DURING SS	1	3 lb/hr	DURING SS	0		

RBLCID	FACILITY NAME	PERMIT ISSUANCE DATE	PROCESS NAME	PRIMARY FUEL	THROUGHPUT	THROUGHPUT UNIT	PROCESS NOTES	CONTROL METHOD DESCRIPTION	EMISSION LIMIT 1	UNIT	AVG TIME CONDITION	EMISSION LIMIT 2	UNIT	AVG TIME CONDITION	STANDARAD EMISSION LIMIT	UNIT	AVG TIME CONDITION
*MD-0042	WILDCAT POINT GENERATION FACILITY	48/2014	2 COMBINED CYCLE COMBUSTION TURBINES, WITH DUCT FIRING	NATURAL GAS	100) MW	TIWO MITSUBSHI & BLOQUE, BLOQUE, CABLOQUE, CABO, WODEL COMBUSTION TURBING EBREATORS (CTS) WITH A NOMINAL GENERATING CAPACITY OF 270 MW CAPACITY EACH, COUPLED WITH A HEAT RECOVERY STRAM GENERATOR (BIRSG) GEUDPED WITH DUCT BURNERS, DRY LOW-NOX COMBUSTORS, SELECTIVE CATALYTIC REDUCTOR (SECR), OXIDATION CATALYST	EXCLUSIVE USE OF PIPELINE QUALITY NATURAL GAS AND EFFICIENT TURBINE DESIGN	25	l llade	AVERAGE OF 3 STACK TEST RUNS						
-MID-0042	GENERATION FACILITY	4/8/2014	DUCT FIREING	UAS	100) MW	Throughput is 2,237 MMBTU/H for each CTG	EFFICIENT TURBINE DESIGN	30	itoriir	RUNS	1			, ·		
*MI-0405	MIDLAND COGENERATION VENTURE	4/23/2013	Natural gas fueled combined cycle combustion turbine generators (CTG) with HRSG	Natural gas	223	7 MMBTU/H	Equipment is permitted as following flexible group (FG): FG-CTG1-2: Two natural gas fired CTGs with each turbine containing a heat recovery steam generator (HRSG) to operate in combined cycle. The two CTGs (with HRSG) are connected to one steam turbine generator. Each CTG is equipped with a dry low Not (DAI) burner and a selective catalytic reduction (SCR) system	. Good combustion practices	0.006	LB/MMBTU	EACH CTG; TEST PROTOCOL	0.012	LB/MMBTU	EACH CTG; TEST PROTOCOL	0		
*MI-0405	MIDLAND COGENERATION VENTURE	4/23/2013	Natural gas fueled combined cycle combustion turbine generators (CTG) with HRSG and duc- burner (DB)	t Natural gas	248	5 MMBTU/H	Four GE 7FA combined cycle turbines, dry low NOx burners and selective catalytic reduction. These limits are for each of the 4 turbines individually, while operating with the duct humers on. This permit is a modification to RBLC OH-0252 to remove honly restrictions on duct burners.	Good combustion practices	0.005	LB/MMBTU	TEST PROTOCOL	10.6	lb/hr	TEST PROTOCOL			
·M1-0403	VENTURE	4/23/2013	burner (DB)	Naturai gas	248	MIMB1U/H	Natural gas fired CTG with DB for HRSG; 4 total.	Good combustion practices	0.008	LEMMETO	PROTOCOL	19.5	, IO/III	PROTOCOL			
*MI-0410	THETFORD GENERATING STATION	7/25/2013	FGCCA or FGCCB- 4 nat. gas fired CTG w/ DB for HRSG	natural gas	258	MMBTU/H heat input,	Technology A (4 total) is 2587 MMBTUH design heat input each CTG. Technology B (4 total) is 2688 MMBTUH design heat input each CTG. Permit was issued for either of two F Class turbine technologies with slight variations in emission rates. Applicant will select one technology, Installation is wo separate CTGHBSG trains diving one steam turbine electrical generator, Two 2XI Blocks. Each CTG will be rate of at 21 to 230 MW (gross) output and the station nominal generating capacity will be up to 1,400 MW.	Combustion air filters, efficient combustion control, low sulfur natural gafale.	s 0.0066	LBMMBTU	TEST PROTOCOL (3 1- H TESTS IF POSSIBLE)				0		
	HOLLAND BOARD OF PUBLIC WORKS - EAST 5TH		FG-CTGHRSG: 2 Combined cycle CTGs with HRSGs			MMBTU/H for each	This process is identified in the permit as FGCTGHRSG; it is 2 combined cycle mutural gas-free combisation turbine generators (CFGS) with Heat Recovery Steam Generators (HRSGs) equipped with duct bumens for supplemental firing (EUCTGHRSG). A EUCTGHRSGC in FGCTGHRSG). The total hours for both units combined for startup and shutdown shall not exceed 635 hours per 12-month folling time period. Each CTGHRSG shall not exceed 647 MMBHWT on a face!	Good combustion practices and the use o			TEST						
*MI-0412	STREET	12/4/2013	with duct burners TURBINE,	natural gas	64	CTGHRSG	heat input basis.	pipeline quality natural gas. USE OF CLEAN FUELS, NATURAL	0.014	LB/MMBTU	PROTOCOL	1			0		
NJ-0074	WEST DEPTFORD ENERGY	5/6/2009		NATURAL GAS	1729	MMFT3/YR		GAS AND ULTRA LOW SULFUR DISTILLATE OIL	18.66	lb/hr					0		
*NJ-0081	PSEG FOSSIL LLC SEWAREN GENERATING STATION	3/7/2014	COMBINED CYCLE COMBUSTION TURBINE WITH DUCT BURNER - SIEMENS	Natural Gas	3369	MMCUBIC FT PER	Natural Gas Usage <= 33,691 MMft*3/yr per 365 consecutive day period, rolling one day basis (per two Siemens turbines and two associated duct burners) The hear input rate of the Siemens turbine will be 2,356 MMBtu/ht(HHV) with a 62.1 duck burner MMBtu/ht(HHV).	Use of natural gas a clean burning fuel	14	l lb/hr	AVERAGE OF THREE ONE HOUR TESTS	()		0		
*NJ-0081	PSEG FOSSIL LLC SEWAREN GENERATING STATION	3/7/2014	CYCLE COMBUSTION TURBINE WITH DUCT BURNER - GENERAL ELECTRIC	Natural gas	3369	MMCUF/year.	Natural Gas Usage = 33.60 MMfr ³ -3yr per 765 consecutive day period, rulling one lay basis ger row unbines and two duct humers) The heat input rate of each General Electric combustion each turbine will be 2,312 MMBuhrHHHV with a 1644 MMBurch duct burner.	Use of natural gas only as a clean burning fuel	g 14.6	lb/hr	AVERAGE OF THREE ONE HOUR TESTS				0		
	PSEG FOSSIL LLC SEWAREN GENERATING		COMBINED CYCLE COMBUSTION TURBINE WITH DUCT BURNER - GENERAL				Natural Gas Usage <= 33,601 MMft* 3/yr per 365 consecutive day period, rolling one day basis (per twithines and two duct burners) The heat input rate of each General Electric combustion each turbine will be 2,312				AVERAGE OF THREE ONE						
*NJ-0081	STATION	3/7/2014	ELECTRIC	Natural gas	3369	MMCUF/year.	MMBtw/hr(HHV) with a 164.4 MMBtw/hr duct burner	Use of Natural Gas a clean burning fuel	9.8	lb/hr	HOUR TESTS	-			0		
*NJ-0082	WEST DEPTFORD ENERGY STATION	7/18/2014	Combined Cycle Combustion Turbine with Duct Burner	Natural Gas	2028	MMCF/YR	This is a 427 MW Siemens Combined Cycle Turbine with duet burner Heat Input rate of the turbine = 2276 MMbeulre (HHV) Heat Input rate of the Duct burner= 777 MMbeulre(HHV) The fuel use of 20,282 MMCF/YR is for three turbines and three Duct burners.	Use of Natural Gas a clean burning fuel	21.55	lb/hr	AVERAGE OF THREE STACK TEST RUNS	0.0069	LB/MMBTU	AVERAGE OF THREE STACK TEST RUNS	0		
PA-0278	MOXIE LIBERTY LLC/ASYLUM POWER PL T		Combined-cycle Turbines (2) - Natural gas fired	Natural Gas	327	7 MMBTU/H	Two combine cycle Turbines, each with a combustion turbine and heat recovery steam generator with duct burner. Each combined-cycle process will be rated at 468 MW or less. The heat input rating of each combustion gas turbine is 2890 MMBHu/hr (HHV) or less, and the heat input rating of each supplemental duct burner is equal to 387 MMBHu/hr (HHV) or less.	Using fuel with little or no ash and sulfur	. 0.004	LB/MMBTU	FOR 468 MW POWERBLOCK	0.005	LB/MMBTU	FOR 454 MW POWERBLOCK	0		
	MOXIE ENERGY LLC/PATRIOT		Combined Cycle Power Blocks 472				Two natural-gas-fired combined cycle powerblocks where each powerblock consists							TOTAL PM FOR			
*PA-0286	GENERATION PLT SUNBURY GENERATION		MW - (2) Combined Cycle Combustion Turbine AND DUCT	Natural Gas			of a combustion turbine and heat recovery steam generator with duct burner. Three powerblocks consisting of three (3) natural gas fired F class combustion turbines coupled with three (3) heat recovery steam generators (HSRGs) equipped			LB/MMBTU		54	T/YR	EACH UNIT	0		
*PA-0288	LP/SUNBURY SES BERKS HOLLOW ENERGY		BURNER (3) Turbine, Combined	Natural Gas		MMBTU/H	with natural gas fired duct burners.			LB/MMBTU	12-MONTH ROLLING)		0		
*PA-0296	ASSOC LLC/ONTELAUNEE	12/17/2013	Cycle, #1 and #2	Natural Gas	304	MMBtu/hr	Equipped with SCR and Oxidation Catalyst The plant will be designed to generate 1,350 nominal megawatts of power. There		48.56	TPY	TOTAL	21.55	lb/hr		0		
TX-0590	KING POWER STATION	8/5/2010	Turbine	natural oas	125	MW	are two configuration scenarios: either four Siemens SGT6-5000F CTGs in combined-cycle mode (Scenario A) or four GE Frame 7FA CTGs in combined	use of low ash fuel (natural gas or low sulfur diesel as a backup)	,,,,	lb/hr		19.8	lb/hr				
TX-0618	CHANNEL ENERGY CENTER LLC	10/15/2012	Combined Cycle Turbine	natural gas) MW	The turbine is a Siemens 501F rated at a nominal 180 MW and the duct burner will have a maximum design heat input of 475 MMBtu/hr.	good combustion and the use of gaseous fuel	27	lb/hr		15.0			0		
TX-0619	DEER PARK ENERGY CENTER		Combined Cycle Turbine	natural gas	18) MW	natural gas-fired combined cycle turbine generator with a heat recovery steam generator equipped with a duct burner. The turbine is a Siemens 501F rated at a nominal 180 megawatts and the DB will have a maximum design rate capability of 725 million British thermal units per hour		27	lb/hr					0		

		PERMIT ISSUANCE	PROCESS NAME	PRIMARY	l			CONTROL METHOD	EMISSION	ļ	AVG TIME	EMISSION	l	AVG TIME CONDITION	STANDARAD EMISSION LIMIT		AVG TIME
RBLCID	FACILITY NAME	DATE	PROCESS NAME	FUEL	THROUGHPUT	THROUGHPUT UNIT		DESCRIPTION	LIMIT 1	UNIT	CONDITION	LIMIT 2	UNIT	CONDITION	EMISSION LIMIT	UNIT	CONDITION
							The generating equipment consists of two natural gas-fired combustion turbines (CTs), each echanistig to a fired bare recovery steam generator (HRSG) to produce steam to drive a shared steam turbine generator. The steam turbine is rated at 271 MW of dectric coupter. There models of combustion turbines are being considered for this site: the General Elector FAAOS, the Siemens SOTO-5000T(4), and the Siemens SOTO-5000T(4). The final selection of the combustion turbine will not be made until after the permit is issued. Plant output will range between 637 and 735 conditions.										
*TX-0641	PINECREST ENERGY CENTER	11/12/2013	combined cycle turbine	natural gas	700	MW	MW, depending on the model turbine selected. Duct Burners are rated at 750 MMBtu/hr each.	pipeline quality natural gas and good combustion practices	26.3	2 lb/hr			0		0		
*TX-0660	FGE TEXAS POWER I AND FGE TEXAS POWER II	3/24/2014			220.5	MW	Four (4) Alstom GT24 CTGs, each with a HRSG and DBs, max design capacity	Low sulfur fuel, good combustion		, nn. a.r.							
*1 X-0660		3/24/2014	Alstom Turbine	Natural Gas	230.	MW	107 MMDAWIII	practices	 	2 PPMVD			0				
*TX-0678	FREEPORT LNG PRETREATMENT FACILITY	7/16/2014	Combustion Turbine	natural gas	81	MW	The exhaust heat from the turbine will be used to heat a heating medium which is used to regenerate rich amine from the acid gas removal system.		15.22	2 lb/hr			ا				
	CEDAR BAYOU ELECTRIC		Combined cycle														
*TX-0689	GENERATION STATION	8/29/2014	natural gas turbines	Natural Gas	225	MW		Good combustion practices, natural gas		0			0		0		
*TX-0698	BAYPORT COMPLEX	9/5/2013	(4) cogeneration turbines	natural gas	90	MW	(4) GE 7EA turbines providing power and process steam The specific equipment includes two combustion turbines (C1s) connected to		(0			0		0		
							The specific equipment includes two combustion turbines (C1s) connected to electric generators, producing between 183 and 223 MW of electricity, depending on ambient temperature and the selected CT. The two HRSGs use dust burners inted at 750 Mkbush reach to supplement the heat energy from the CTs. The steam from the two HRSGs is combined and routed to a single steam turbine driving a third electric generator with an electricity output equagity of 271 MW. and 225 MW. The applicant is considering three models of CT; one model will be selected and The applicant is considering three models of CT; one model will be selected in the permit revised to reflect the selection before construction begins. The three CT										
	LA PALOMA ENERGY		(2) combined cycle				the permit revised to reflect the selection before construction begins. The three CT models are: (1) General Electric 7FA.04; (2) Siemens SGT6-5000F(4); or (3)										
*TX-0708	CENTER CENTER	2/7/2013	turbines	natural gas	650	MW	Siemens SGT6-5000F(5).			0			0		0		
	SAND HILL ENERGY		Natural gas-fired combined cycle														
*TX-0709	CENTER	9/13/2013	turbines	Natural Gas	173.9	MW	General Electric 7FA.04 at 197 MW nominal oupst. The duet burners will be capable of a maximum natural gas firing rate of up to 483 MMBtuh (HHV). The duet burners may be freid additional bours, bowever, total annual firing will not exceed the equivalent of 4,375 hours at maximum capacity per duet burner. The available capacity of the existing steam turbine will be increased from 125 MW in			D			0		0		
*TX-0710	VICTORIA POWER STATION	12/1/2014	combined cycle turbine	natural gas	197	MW	its existing 1x1x1 configuration to approximately 185 MW in the 2x2x1 configuration. The facility will consist of a Mitsubishi Heavy Industries (MHI) J model gas fired			D			0		0		
	TRINIDAD GENERATING		combined cycle				The facility will consist of a Mitsubishi Heavy Industries (MHI) J model gas fired combustion turbine nominally rated at 497 megawatts (MW) equipped with a HRSG and DB with a maximum design capacity of 402 million British thermal units per hour (MMBtulhs). The gross nominal output of the CTG with HRSG and										
*TX-0712	FACILITY	11/20/2014	turbine	natural gas	497	MW	DB is 530 MW.		-	D			0		0		
*TX-0713	TENASKA BROWNSVILLE GENERATING STATION	4/29/2014	(2) combined cycle turbines	natural gas	274	MW	Each CTG is site-rated at 274 MW gross electric output at G2ÅF ambient temperature. At his condition, two HRSGs with full duct burner fring produce enough steam to generate an additional 336 MW, for a total of 884 MW gross, or with about 5% looses, about 840 MW net electric output. Under summerine conditions, the net output is approximately 800 MW with the 2x1 CCGT configuration or about 400 MW with le 1x1 CCGT configuration. The gas turbines will be one of three options: (1) Two Siemens Model FS (SFS) CTGs each rated at nominal capability of 225 megawatts (MW). Each CTG will have a duct fired HRSG with a maximum heat			0			0		C		
*TX-0714	S R BERTRON ELECTRIC GENERATING STATION	12/19/2014	(2) combined cycle turbines Combined-cycle gas	natural gas	240	MW	input of 688 million British thermal units per hour (MMBtuhr). (2) Two General Electric Model TPA (GEFFA) CTGs each rated at nominal capability of 215 MW. Each CTG will have a duet fired HRSG with a maximum heat input of 523 MMBtuhr. (3) Two Mistabidsi Heavy Industry G Frums (MHS01G) CTGs each rated at a nominal electric output of 263 MW. Each CTG will have a duet fired HRSG with a maximum heat input of 686 MMBtuhr.		(0			0		C		
*TX-0730	COLORADO BEND ENERGY CENTER	4/1/2015	turbine electric		1100	MW	combined cycle power plant that uses two combustion turbines and one steam	.05.:		111.4							
1.7-0/30	CENTER	4/1/2013	Combined Cycle	maturar gas	1100		turbine, model GE 7HA.02 Two power configuration options authorized	efficient combustion, natural gas fuel	4:	, ioriii			1				
	EAGLE MOUNTAIN STEAM		Turbines (>25 MW) – natural				Siemens – 231 MW + 500 million British thermal units per hour (MMBtu/hr) duct burner										
*TX-0751	ELECTRIC STATION	6/18/2015	gas	natural gas	210	MW	GE – 210 MW + 349.2 MMBtu/hr duct burner Two power configuration options authorized		35.47	7 lb/hr		81.8	8 T/YR		0		
	LON C. HILL POWER		Combined Cycle				Siemens â& 240 MW + 250 million British thermal units per hour (MMBtu/hr)	Good combustion practices and use of									
*TX-0767	STATION C. HILL POWER	10/2/2015	Turbines (>25 MW)	natural gas	195	MW	duct burner GE – 195 MW + 670 MMBtu/hr duct burner	Good combustion practices and use of pipeline quality natural gas	16	6 lb/hr		109	5 TPY		0		
			CYCLE TURBINE								3 HR AVG. (WITHOUT			3 HR. AVG. (WITH DUCT			
VA-0315	WARREN COUNTY POWER PLANT - DOMINION	12/17/2010	& DUCT	Natural Gas	2004	MMBTU/H	Emissions are for one of three units (Mitsubishi natural gas-fired combustion turbine (CT) generator, Model M501 GAC).	Natural Gas only, fuel has maximum sulfur content of 0.0003% by weight.		llh.Au	DUCT BURNER FIRING)	.	4 lb-be	BURNER FIRING)			
- A-0313		12/17/2010	COMBUSTION	, saturar Gas	2996	ab i C/II			T '	, ioriii		†		3 H			
*VA-0321	BRUNSWICK COUNTY POWER STATION	3/12/2013	TURBINE GENERATORS, (3)	Natural Gas	3442	MMBTU/H	Three (3) Mitsubishi M501 GAC combustion turbine generators with HRSG duct burners (natural gas-fired). This entry is for both of two identical units at the facility.	Low sulfur/carbon fuel and good combustion practices.	0.0047	7 LB/MMBTU	3 H AVG/WITH DUCT BURNING	9.	7 lb/hr	AVG/WITHOUT DUCT BURNING	16.3	3 H AVG/WITH DUCT BURNING	
	MOUNDSVILLE COMBINED		Combined Cycle				Nominal 197 mW General Electric Frame 7FA.04 Turbine w/ Duct Burner -	Good Combustion Practices, Inlet Air									
*WV-0025	CYCLE POWER PLANT CHEYENNE PRAIRIE	11/21/2014	Turbine/Duct Burner Combined Cycle	Natural Gas	2419.6	mmBtu/Hr	throughput denotes aggregate heat input of turbine and duct burner (HHV).	Filtration, & use of Natural Gas	8.9	9 lb/hr	3-HOUR	0.003	7 LB/MMBTU	CALENDAR	0		
*WY-0070	GENERATING STATION	8/28/2012	Turbine (EP02)	Natural Gas	40	MW		good combustion practices	-	4 lb/hr	AVERAGE	17	5 TONS	YEAR	0		
	Footprint Power Salem Harbor Development LP		Combustion Turbine	Natural Gas	346	MW		Clean Fuel	13	3 lb/hr	1-hr average; Duct Burners On	0.006	2 lb/MMBtu	1-hr average; Duct Burners On			
	Footprint Power Salem Harbor Development LP		Combustion Turbine	Natural Gas		MW		Clean Fuel	0.04	l lb/MW-hr	1-hr average; Duct Burners On						
	Kalama Energy Center		Combustion Turbine	Natural Gas		MMBtu/hr			17.1		3-hr average	0.000	8 lb/MMBtu	3-hr average			
									17.1	1 IOVIII		0.006	no incivirsitu	3-nr average			
	Kalama Energy Center		Combustion Turbine	Natural Gas	224	MMBtu/hr			70	0 tpv	12-mo rolling						

	1	PERMIT ISSUANCE		PRIMARY	1	1		CONTROL METHOD	EMISSION	1	AVG TIME	EMISSION	1	AVG TIME	STANDARAD		AVG TIME
RBLCID			PROCESS NAME		THROUGHPUT	THROUGHPUT UNIT	PROCESS NOTES	DESCRIPTION	LIMIT 1	UNIT	CONDITION		UNIT	CONDITION	EMISSION LIMIT	UNIT	CONDITION
RDLCID	I ACIDIT I WENT	Ditte	TROCESSITEME	I CLL	TIMOCOM CI	TIMOCOM CT C.UT	TROCESS TOTES	DESCRIPTION	121.11111	10.111	COMMITTON	122.011 2	10.111	COMBITTON	LantonontLanti	0.111	CO.IDITIO.I
		1															ĺ
	GenConn Middletown LLC		Combustion Turbine	Natural Gas	474.9	MMBtu/hr			-	6 lb/hr							
	n :so n	1	Block 1 CT	Natural Gas					1	8 lb/hr	30-day rolling						ĺ
	PacifiCorp Energy		Block I CI	Natural Gas					10.3	8 lb/nr	average						
	L										30-day rolling						ĺ
	PacifiCorp Energy		Block 2 CT	Natural Gas	629	MW			1	4 lb/hr	average						
	Pioneer Valley					MW				4 lb/MMBm							ĺ
			Combustion Turbine	Natural Gas	387	MW			0.00-	4 lb/MMBtu							
	Sevier Power Company Power	1	0 1 2 7 11	N. 10	500	MW			l .		30-day rolling						1
_	Plant Woodbridge Energy Center		Combustion Turbine	Natural Gas	580	MW			- 1	4 lb/hr	average						
																	ĺ
	(CPV Shore, LLC)			Natural Gas	2807	MMBtu/hr			19.	l lb/hr	(With DB)						
	Cricket Valley Energy Center	1	Combustion Turbine	N. 10	1000	MW			191.								ĺ
			Combustion Turbine	Natural Gas	1000	MW			191.	1 tpy							⊢—
	Gibson County Generation,		Combustion Turbine	N. 10		MW			20.	9 lb/hr		0.0000	lb/MMBtu				ĺ
_	LLC		Combustion Turbine	Natural Gas	41/	MW			28.	9 lb/nr		0.0088	Ib/MMBtu	24-hr average			
	L												L				ĺ
	Tenaska Partners LLC	-	Combustion Turbine	Natural Gas	3147	MMBtu/hr			11.3	8 lb/hr		0.0039	lb/MMBtu				
	UGI Development Co/ Hunlock									l lb/MMBm							ĺ
	Creek			Natural Gas	471.2	MMBtu/hr			0.014	I Ib/MMBtu							
	Huntington Beach Energy	1		Natural Gas	020	MW (net)											1
-	Project			Natural Gas	939	MW (net)			9.:	5 lb/hr							
	l																ĺ
—	Hess Newark Energy Center	-	Combustion Turbine	Natural Gas	2266	MMBtu/hr		-	13.3	2 lb/hr	-	-		-	-		
	W 1 F G : B1 1 A	6,000,000			2012.0	nam. I	er we did to		1.0	4 lb/hr	average of 3 test						1
	York Energy Center Block 2 Shell Chemical	6/15/2015	,	_	2512.5	MMBtu/hr	firing NG with duct burner		18.4	4 ID/hr	runs						
	Appalachia/Petrochemicals	1									turbines with duct	1					ĺ
	Appaiacina refroenemicals	6/18/2015				MMBtu/hr	each of the combustion turbines with duct burners		0.006	6 lb/MMBtu		1					ĺ
	Complex	6/18/2013	·1	1	664	MMBtu/hr	each of the combustion turbines with duct burners		0.006	6 IB/MMBtu	burners	1	1	1			1

		PERMIT ISSUANCE	I	IPRIMARY		_		invenergy, EEG - Allegheny County Energ	CONTROL METHOD	IEMISSION		AVG TIME	IEMISSION		IAVG TIME	ISTANDARAD		IAVG TIME
RBLCID	FACILITY NAME	DATE	PROCESS NAME	FUEL	THROUGHPUT	Т	THROUGHPUT UNIT	PROCESS NOTES	DESCRIPTION	LIMIT 1	UNIT	CONDITION	LIMIT 2	UNIT	CONDITION	EMISSION LIMIT	UNIT	CONDITION
CT-0161	KILLINGLY ENERGY CENTER	6/30/2017	Natural Gas w/o Duct Firing	Notes Co.	2	nco 1	/MBtu/hr	The condensation for a selection of the	Good Combustion	0.0	044 LB/MMBTU							
C1-0161	CENTER	6/30/2017		Natural Gas		2969 N	AMBtu/hr	Throughput is for turbine only	Good Combustion	0.0	044 LB/MMB1U			0		1	<u>'</u>	+
			Combined-cycle					3-on-1 combined cycle unit. GE 7HA.02 turbines, approximately 350 MW per turbine. Total										
FL-0356	OKEECHOBEE CLEAN ENERGY CENTER	3/9/2016	electric generating unit	Natural gas	31	1096 N	MMBtu/hr per turbine	unit generating capacity is approximately 1,600 MW. Primarily fueled with natural gas. Permitted to burn the base-load equivalent of 500 hr/yr per turbine on ULSD.	Use of clean fuels		GR. S/100 SCF 2 GAS	FOR NATURAL GAS	0.00	15 % S IN ULSD	FOR ULSD	1 .	,	
								, , , , , , , , , , , , , , , , , , , ,										
*FL-0363	DANIA BEACH ENERGY CENTER	12/4/2017	2-on-1 combined cycle unit (GE 7HA)	Notuml and	4	1000	/IMBtu/hr	Two nominal 430 MW combustion turbines, coupled to a steam turbine generator	Clean fuels		0			0		Ι ,	J	
112-0303	CENTER	12/4/2017	EUCCT (Combined	// Ivaturar gas	"	1000	AMBIUII		Good combustion practices and the use of	ſ	-			-		<u> </u>	1	
MI-0427	FILED OFFICER ATTION	11/17/2017	cycle CTG with		100		MRTU/H	A 1,934.7 MMBTU/H natural gas fired heavy frame industrial combustion turbine. The	pipeline quality natural gas, combustion		066 LB/MMBTU					l .		
MI-042/	FILER CITY STATION	11/1//201/	unfired HRSG)	Natural gas	193	54./ N	AMB I U/H	turbine operates in combined-cycle with an unfired heat recovery steam generator (HRSG). Two (2) combined-cycle natural gas-fired combustion turbine generators, each with a heat	inlet air filter.	0.0	066 LB/MMB1U			0	_	+ • • •	1	+
								recovery steam generator (CTGHRSG).										
			FGCTGHRSG					Plant nominal 1,150 MW electricity production. Turbines are each rated at 3,658 MMBTU/H										
			(EUCTGHRSG1					and HRSG duct burners are each rated at 800 MMBTU/H.	Good combustion practices, inlet air						HOURLY; EACH			
*MI-0435	BELLE RIVER COMBINED CYCLE POWER PLANT	27.0000	& EUCTGHRSG2)					T 1700	conditioning and the use of pipeline		16 LB/H	HOURLY; EACH UNIT	· .	2.2 LB/H	UNIT W/O DUC' BURNER FIRING			
·M1-0433	CTCLE FOWER FLANI	//10/2018	EUCTORKS02)	Natural gas		- 0		The HRSGs are not capable of operating independently from the CTGs.	quality natural gas.		10 LB/H	UNII	1.	2.2 LB/H	BURNER FIREN	,	1	
			Combined Cycle					2 CTGs to operate in simple cycle & combined cycle modes. 231 MW (Siemens) or 210 MW	GOOD COMBUSTION PRACTICES									
TX-0788	NECHES STATION	3/24/2016	& amp; Cogeneration	n natural gas	-	231 N	AW	(GE) Simple cycle operations limited to 2,500 hr/yr.	AND LOW SULFUR FUEL	19	9.35 LB/H			0		-	-	+
	DECORDOVA STEAM		Combined Cycle					2 CTGs to operate in simple cycle & combined cycle modes. 231 MW (Siemens) or 210 MW	GOOD COMBUSTION PRACTICES									
TX-0789	ELECTRIC STATION	3/8/2016	& amp; Cogeneration	natural gas		231 N	ИW	(GE). Simple cycle operations limited to 2,500 hr/yr.	AND LOW SULFUR FUEL	35	5.47 LB/H			0		-		
	PORT ARTHUR LNG		Refrigeration Compression															
TX-0790	EXPORT TERMINAL	2/17/2016	Turbines	natural gas		10 N	// TONNES/YR	Four GE Frame 7E gas turbines for refrigeration and compression at the site		11	1.07 LB/H		42.	15 T/YR	1	-		
			Simple Cycle Electrical						Equipment specifications & work practices -	1					1			1
	PORT ARTHUR LNG		Generation Gas						Good combustion practices and use of									
TX-0790	EXPORT TERMINAL CHOCOLATE BAYOU	2/17/2016	Turbines 15.210	natural gas		34 N	AW	Nine GE PGT25+G4 gas turbines for electrical generation at the site at 34 MW/turbine	low carbon, low sulfur fuel	1	2.32 LB/H		8.	84 T/YR		-		
	STEAM GENERATING		Combined Cycle	NATURAL														
TX-0817	(CBSG) STATION	2/17/2017	Cogeneration	GAS		50 N	ΔW	2 UNITS EACH 50 MW GE LM6000		(5.98 LB/H			0		1		
*TX-0834	MONTGOMERY COUNTY POWER STATIOIN			NATURAL	2	635 x	MBTU/HR/UNIT	Two Mitsubishi M501GAC turbines (without fast start)	PIPELINE NATURAL GAS, GOOD COMBUSTION	12	25.7 TON/YR			0		1 .		
1.7.70.74	TOTAL STATION	3/30/2018	Turbine COMBUSTION	0.70	- 21	N CCC	man round out	a no microsom mesor esser (unione last state)	COMPOSIBLE	1.	LOW IN			-		1 '		+
			TURBINE GENERATOR															
			WITH DUCT-															
			FIRED HEAT															
	GREENSVILLE POWER		RECOVERY STEAM									AVG OF 3 TEST						
*VA-0325	STATION STATION	6/17/2016	GENERATORS (3)	natural eas	3:	1227 N	MMBTU/HR	3227 MMBTU/HR CT with 500 MMBTU/HR Duct Burner, 3 on 1 configuration.	Pipeline Quality Natural Gas	0.0	039 LB/MMBTU	RUNS	14	4.1 LB/H		1	,	
			COMBUSTION															
			TURBINE #2 (NORMAL									12-MONTH ROLLING AVG						
	VICTORVILLE 2 HYBRID		OPERATION, NO	NATURAL								(NO DUCT						
CA-1191	POWER PROJECT	3/11/2010	DUCT BURNING) COMBUSTION	GAS		154 N	ИW	154 MW Combined Cycle Combustion Turbine Generator	PUC QUALITY NATURAL GAS		12 lb/hr	BURNING)		0		-		
			TURBINE #1									12-MONTH						
			(NORMAL									ROLLING AVG						
CA-1191	VICTORVILLE 2 HYBRID POWER PROJECT	2/11/2016	OPERATION, NO DUCT BURNING)	Natural Gas		154 N	OV.	154 MW Combined Cycle Combustion Turbine Generator	PUC QUALITY NATURAL GAS		12 15 4	(NO DUCT BURNING)				l ,		
CA-1191	POWER PROJECT	3/11/2010	COMBUSTION	Naturai Gas		134 N	/IW	134 M W Combined Cycle Combustion Turbine Generator	PUC QUALITY NATURAL GAS		12 lit/mr	BURNING)		0		1	1	
			TURBINE #1															
			(NORMAL OPERATION, NO	NATURAL.								12-MONTH						
CA-1192	AVENAL ENERGY PROJECT	6/21/2011	DUCT BURNING)	GAS		180 N	ИW		USE PUC QUALITY NATURAL GAS	8	3.91 lb/hr	ROLLING AVG		0				
									USE PIPELINE QUALITY NATURAL.									
			COMBUSTION						GAS, OPERATE DUCT BURNERS NO			6-HR ROLLING			6-HR ROLLING			
	MORRO BAY POWER		TURBINE	NATURAL					MORE THAN 4000 HRS PER YEAR			AVG (NO DUCT			AVG (W/ DUCT	l .		
CA-1198	PLANT	9/25/2008	GENERATOR	UAS		180 N	aw.	TWO NATURAL GAS-FIRED COMBUSTION TURBINE-GENERATORS (CTGS) RATED	(12-MONTH ROLLING AVG BASIS)		11 lb/hr	BURNING)	1	3.3 lb/hr	BURNING)	+ '	1	+
			COMBUSTION					AT 154 MEGAWATT (MW, GROSS) EACH, TWO HEAT RECOVERY STEAM		1					1			
	PALMDALE HYBRID		TURBINES (NORMAL	NATURAL				GENERATORS (HRSG), ONE STEAM TURBINE GENERATOR (STG) RATED AT 267 MW, AND 251 ACRES OF PARABOLIC SOLAR-THERMAL COLLECTORS WITH				9-HR AVG (NO			9-HR AVG (W/			
CA-1212	POWER PROJECT	10/18/2011	OPERATION)	GAS		154 N	4W	ASSOCIATED HEAT-TRANSFER EQUIPMENT	USE PUC QUALITY NATURAL GAS	0.0	048 LB/MMBTU	DUCT BURNING	0.00	49 LB/MMBTU	DUCT BURNING	<u> </u>		
	DUEDLO AIDPORT		Four combined			T						AVE OVER						
*CO-0073	PUEBLO AIRPORT GENERATING STATION	7/22/2010	cycle combution turbines	natural gas		373 1	nmbtu/hr	Three GE, LMS6000 PF, natural gas-fired, combined cycle CTG, rated at 373 MMBtu per hour each, based on HHV and one (1) HRSG each with no Duct Burners	Use of pipeline quality natural gas and good combustor design	1	4.3 lb/hr	STACK TEST LENGTH		0	1	1	,	1
												12 MONTH						1
DE-0024	GARRISON ENERGY CENTER	1/30/2013	Linit 1	Natural Gas		260	nillion BTUs		Fuel Usage Restriction to natural gas and low sulfur distillate oil	1.5	20.4 TONS	ROLLING		۵	1	1 .	,	1
152-0024		1/30/2013	Omt I	ivaturai Gas	1	200111	mmon D1Us		IOW SUITUF DISTINATE OIL	1.	LO.4: TONS	AVERAGE AVG. OF 3 ONE	1	0		1 '	1	+
I	MARSHALLTOWN	I	Combustion turbine	Ι.				two identical Siemens SGT6-5000F combined cycle turbines without duct firing, each at 2258		1		HOUR TEST			12-MONTH			1
*IA-0107	GENERATING STATION	4/14/2014	#1 - combined cycle	natural gas	22	258 m	nmBtu/hr	mmBtu/hr generating approx. 300 MW each.		-	0.01 LB/MMBTU	RUNS AVERAGE OF 3	7	7.1 TON/YR	ROLLING 12-MONTH	+ '	1	+
	MARSHALLTOWN		Combustion turbine							1		ONE-HOUR TES	Т		ROLLING			1
*IA-0107	GENERATING STATION	4/14/2014	#2 -combined cycle	natural gas	2	258 n	nmBtu/hr		WHILE FIRING NATURAL GAS: USE	-	0.01 LB/MMBTU	RUNS	7	7.1 TON/YR	TOTAL	1	-	+
									OF PIPELINE QUALITY NATURAL									
									GAS AND GOOD COMBUSTION PRACTICES	1					1			
			COMBINED						PRACTICES									
			CYCLE TURBINE					TURBINES ALSO PERMITTED TO BURN NO. 2 FUEL OIL AND ULTRA LOW SULFUR	WHILE FIRING FUEL OIL: USE OF									1
	NINEMILE POINT FLECTRIC GENERATING		GENERATORS	NATURAL.				DIESEL.	ULTRA LOW SULFUR FUEL OIL AND GOOD COMBUSTION			HOURLY AVERAGE W/O			HOURLY AVERAGE W/			
LA-0254	ELECTRIC GENERATING PLANT	8/16/2011	(UNITS 6A & amp; 6B)	GAS	7	7146	MMBTU/H	FUEL OIL USE IS LIMITED TO 1000 HOURS PER YEAR.	AND GOOD COMBUSTION PRACTICES	2/	5.23 lb/hr	AVERAGE W/O DUCT BURNER	33.	16 lb/hr	AVERAGE W/ DUCT BURNER	1 .		
	1	3.102011	Combined Cycle		1			The second secon				JOET BORNER	- 55.		DOCT BOILDER	1		
	SABINE PASS LNG		Refrigeration						Good combustion practices and fueled by	.1		HOURLY			1			1
LA-0257	TERMINAL	12/6/2011	Compressor Turbines (8)	natural gas		286 N	MMBTU/H	GE LM2500+G4	natural gas		2.08 lb/hr	MAXIMUM		0		1 .		
		12.02011	COGENERATION					EACH COGEN TRAIN CONSISTS OF A 50 MW GE LM6000 PF SPRINT TURBINE AND	USE OF NATURAL GAS AS FUEL									
LA-0256	COGENERATION PLANT	12/6/2011	TRAINS 1-3 (1-10, 2-10, 3-10)	NATURAL		475	MBTU/H	A HEAT RECOVERY STEAM GENERATOR EQUIPPED WITH A 70 MM BTU/HR DUCT BURNER.	AND GOOD COMBUSTION PRACTICES		3 72 llb/br	HOURLY MAXIMUM		0		1 .		
	POODENERATION FLANT	12/6/2011	2-10, 3-10)	Juva	1 .	4/3 N	IIVID I U/П	DOCT BOKNER.	I KACI KES	1	2.72 10/Hr	IMANIMUM	1	VI			4	

RBLCID	FACILITY NAME	PERMIT ISSUANCE DATE	PROCESS NAME	PRIMARY	THROUGHPUT	THROUGHPUT UNIT	DROCESS NOTES	CONTROL METHOD DESCRIPTION	EMISSION LIMIT 1	UNIT	AVG TIME CONDITION	EMISSION LIMIT 2	UNIT	AVG TIME CONDITION	STANDARAD EMISSION LIMIT	LINET	AVG TIME CONDITION
KRTCID	FACILITY NAME	DATE	2 COMBINED	FUEL	THROUGHPUT	THROUGHPUT UNIT	PROCESS NOTES	DESCRIPTION	LIMIT 1	UNIT	CONDITION	LIMIT 2	UNIT	CONDITION	EMISSION LIMIT	JUNIT	CONDITION
			CYCLE														
			COMBUSTION TURBINES					EXCLUSIVE USE OF PIPELINE			AVERAGE OF 3						
	WILDCAT POINT		WITHOUT DUCT	NATURAL				QUALITY NATURAL GAS AND			STACK TEST						
'MD-0042	GENERATION FACILITY	4/8/2014	FIRING	GAS	270	MW		EFFICIENT TURBINE DESIGN	25.1	lb/hr	RUNS)		0		
			Combined cycle				This is a combined-cycle combustion turbine with a non-fired heat recovery steam generator (HRSG).										
			combustion turbine														
*MI-0402	SUMPTER POWER PLANT	11/17/2011	w/ HRSG	Natural gas	130	MW electrical output	Natural gas-fired combustion turbine conversion to combined-cycle. Throughput is 2,237 MMBTU/H for each CTG		0.0066	LB/MMBTU	TEST	7.4	1 lb/hr	TEST	- 0		
			Natural gas fueled combined cycle				Equipment is permitted as following flexible group (FG): FG-CTG1-2: Two natural gas fired CTGs with each turbine containing a heat recovery steam				EACH CTG:						
			combustion turbine				generator (HRSG) to operate in combined cycle. The two CTGs (with HRSG) are connected				TEST			EACH CTG;			
	MIDLAND COGENERATION	1	generators (CTG)				to one steam turbine generator. Each CTG is equpped with a dry low NOx (DLN) burner and a				PROTOCOL (PM			TEST			
*MI-0405	VENTURE	4/23/2013	with HRSG TURBINE	Natural gas	2237	MMBTU/H	selective catalytic reduction (SCR) system.	Good combustion practices USE OF CLEAN FUELS, NATURAL	0.006	LB/MMBTU	only)	0.012	LB/MMBTU	PROTOCOL	- 0	1	_
			COMBINED	NATURAL				GAS AND ULTRA LOW SULFUR									
NJ-0074	WEST DEPTFORD ENERGY	5/6/2009	CYCLE	GAS	17298	MMFT3/YR	Four GE 7FA combined cycle turbines, dry low NOx burners and selective catalytic reduction.	DISTILLATE OIL	18.66	lb/hr)	-	- 0		-
							These limits are for each of the 4 turbines individually, while operating with the duct burners				12-MONTH						
*PA-0296	BERKS HOLLOW ENERGY ASSOC LLC/ONTELAUNEE	12/17/2013	Turbine, Combined		2044	MMBtu/hr	on. This permit is a modification to RBLC OH-0252 to remove hourly restrictions on duct		48 56	TDI	ROLLING TOTAL						
*PA-0296	ASSOC LLC/ONTELAUNEE	12/1//2013	Cycle, #1 and #2	Natural Gas	3046	MMBtwhr	The plant will be designed to generate 1,350 nominal megawatts of power. There are two		48.30	IPY	IOIAL	10) Ib/hr		-	1	
			1				configuration scenarios: either four Siemens SGT6-5000F CTGs in combined-cycle mode	use low ash fuel (natural gas or low sulfur diesel as a backup) and good combustion			1						
TX-0590	KING POWER STATION	8/5/2010	Turbine	natural gas	1257	MW	(Scenario A) or four GE Frame 7FA CTGs in combined cycle mode (Scenario B). Scenario B	diesel as a backup) and good combustion practices	111	lb/hr	1	193	lb/hr			1	
	GIONERSIATION	8/3/2010	- Jaconic	каз	1330		also includes one or two auxiliary boilers. (2) GE7FA at 195 MW each,					19.0			1		
	THOMAS C. FERGUSON		Natural ac- f 3				(1) steam turbine at 200 MW. Each turbine is equipped with an unfired heat recovery steam generator (HRSG), which				1						
TX-0600	POWER PLANT	9/1/2011	Natural gas-fired turbines	natural gas	390	MW	reach turbine is equipped with an unfired near recovery steam generator (FRSG), which provides steam for the steam turbine.	pipeline quality natural gas	33.43	lb/hr	1-H)	1	0		
							The three combustion turbine generators (CTG) will be the General Electric 7FA, each with a										
							The three combustion turbine generators (CTG) will be the General Electric 7FA, each with a maximum base-load electric power output of approximately 195 megawatts (MW). The steam										
			Combined cycle gas				turbine is rated at approximately 235 MW. This project also includes the installation of two				1						
TX-0620	ES JOSLIN POWER PLANT FGE TEXAS POWER I AND	9/12/2012	turbine	natural gas	195	MW	emergency generators, one fire water pump, and auxiliary equipment. No duct burners. Four (4) Alstom GT24 CTGs, each with a HRSG and DBs, max design capacity 409	Low sulfur fuel, good combustion	18	lb/hr	PER TURBINE)	+	- 0	-	1
*TX-0660	FGE TEXAS POWER IAND	3/24/2014	Alstom Turbine	Natural Gas	230.7	MW	MMBtu/hr	practices	2	PPMVD)		0		
	EDEEDODE 1 · · ·																
*TX-0678	FREEPORT LNG PRETREATMENT FACILITY	7/16/2014	Combustion Turbine	natural gas	87	MW	The exhaust heat from the turbine will be used to heat a heating medium which is used to regenerate rich amine from the acid gas removal system.		15.22	llh/hr		١ ,	,				
174-0070		77102014		natara gas			regenerate Hell annue nom the deta gas removal system.		13.22	1011		,	1				
*TX-0689	CEDAR BAYOU ELECTRIC GENERATION STATION	8/29/2014	Combined cycle natural gas turbines	Natural Gas	226	MW		Cool cool cool					,				
· 1.A-0089	GENERATION STATION		(4) cogeneration	Naturai Gas	223	WW		Good combustion practices, natural gas	,			· '	,		1		
*TX-0698	BAYPORT COMPLEX	9/5/2013	turbines Natural gas-fired	natural gas	90	MW	(4) GE 7EA turbines providing power and process steam		()		0		
	SAND HILL ENERGY		combined cycle														
*TX-0709	CENTER	9/13/2013	turbines	Natural Gas	173.5	MW			()		0		
							The facility will consist of a Mitsubishi Heavy Industries (MHI) J model gas fired combustion turbine nominally rated at 497 megawatts (MW) equipped with a HRSG and DB with a										
	TRINIDAD GENERATING		combined cycle				maximum design capacity of 402 million British thermal units per hour (MMBtu/hr). The										
*TX-0712	FACILITY	11/20/2014	turbine	natural gas	497	MW	gross nominal output of the CTG with HRSG and DB is 530 MW.		()		0		
	COLORADO BEND ENERGY	,	Combined-cycle gas turbine electric				combined cycle power plant that uses two combustion turbines and one steam turbine, model										
*TX-0730	CENTER	4/1/2015	generating facility COMBINED	natural gas	1100	MW	GE 7HA.02	efficient combustion, natural gas fuel	43	lb/hr)		0		
			CYCLE TURBINE								3 HR AVG. (WITHOUT			3 HR. AVG. (WITH DUCT			
	WARREN COUNTY POWER		& DUCT				Emissions are for one of three units (Mitsubishi natural gas-fired combustion turbine (CT)	Natural Gas only, fuel has maximum			DUCT BURNER			BURNER			
VA-0315	PLANT - DOMINION GATEWAY	12/17/2010	BURNER, 3	Natural Gas	2996	MMBTU/H	generator, Model M501 GAC).	sulfur content of 0.0003% by weight.	8	lb/hr	FIRING)	14	lb/hr	FIRING)	0		
	COGENERATION 1, LLC -		COMBUSTION				Burns primarily natural gas but has the capacity to burn up to 500 hours of ultra low sulfur	Clean burning fuels and good combustion									
VA-0319	SMART WATER PROJECT	8/27/2012	TURBINES, (2) COMBUSTION	Natural Gas	593	MMBTU/H	diesel fuel (ULSD) as backup.	practices.		lb/hr	3 H AVG)		0		
	BRUNSWICK COUNTY		TURBINE				Three (3) Mitsubishi M501 GAC combustion turbine generators with HRSG duct burners	Low sulfur/carbon fuel and good			3 H AVG/WITHOUT			AVG/WITHOUT			
*VA-0321	POWER STATION	3/12/2013	GENERATORS, (3)	Natural Gas	3442	MMBTU/H	(natural gas-fired).	combustion practices.	0.0033	LB/MMBTU	DUCT BURNING	9.1	7 lb/hr	DUCT BURNING	3 0		
*WY-0070	CHEYENNE PRAIRIE GENERATING STATION	8/28/2012	Combined Cycle Turbine (EP02)	Natural Gas	Af	MW		good combustion practices		llb/br	3-HOUR AVERAGE	17.	TONS	CALENDAR YEAR		_	
1-0070	Footprint Power Salem Harbor	6/28/2012								noral	1-hr average; Duct			1-hr average; Due	et l		
	Development LP		Combustion Turbine	Natural Gas	346	MW		Clean Fuel	8.8	lb/hr	Burners Off	0.007	l lb/MMBtu	Burners Off			
	Footprint Power Salem Harbor Development LP		Combustion Turbine	Natural Gas	346	MW		Clean Fuel	0.041	lb/MW-hr	1-hr average; Duct Burners Off						
				Natural Gas						lb/hr	30-day rolling						
	PacifiCorp Energy	1	Block 1 CT	Natural Gas	1	-			10.8	Ib/hr	average 30-day rolling			1	+		1
	PacifiCorp Energy		Block 2 CT	Natural Gas	629	MW			14	lb/hr	average			1			
	Pioneer Valley		Combustion Turbine	Natural Gas	200	MW			0.00	lb/MMBtu							
	Woodbridge Energy Center		Compussion Turbine								+			1	1		
	(CPV Shore, LLC)			Natural Gas	2,307	MMBtu/hr			12.1	lb/hr	1						
	Hummel Station LLC		Combustion Turbine	Natural Gas	2 254 00	MMBtu/hr			12	lb/hr	1						
		1	_ Juneau ou Turoline		2,234.00			Combusting commercially available,	17		1						
	Cricket Valley Energy Center		Combustion Turbine	Natural Gas	1000	MW		pipeline natural gas in the turbines and duct burners	0.000	lb/MMBtu	1-hr average			1			
	Gibson County Generation.							duct ouners					 				1
	LLC	1	Combustion Turbine	Natural Gas	417	MW			0.0088	lb/MMBtu	24-hr average						1
	Pioneer Valley Energy Center		Combustion Turbine	Natural Gas	2542	MMBtu/hr			0.004	lb/MMBtu	1	9,	lb/hr	1			
	Russell City Energy Company,										1	7.0		1	1		
	LLC	1	Combustion Turbine	Natural Gas	2038.6	MMBtu/hr			7.5	lb/hr	+	0.0036	lb/MMBtu	+	+		1
	Tenaska Partners LLC		Combustion Turbine	Natural Gas	3147	MMBtu/hr			11.8	lb/hr	1	0.0039	lb/MMBtu	1			
	UGI Development Co/ Hunlock	:															
	Creek Huntington Beach Energy			Natural Gas	471.2	MMBtu/hr			0.0141	lb/MMBtu	+		1	+	+		+
	Project Project			Natural Gas	939	MW (net)			4.5	lb/hr							
	Hess Newark Energy Center		Combustion Turbine	Natural Gas	2220	MMBtu/hr				lb/hr							
		1	Compussion Turbine	preatural Gas	2320	INIMIDIUM			11	10/HF	average of 3 test		-	+	+		
	York Energy Center Block 2	6/15/2015				MMBtu/hr	firing NG without duct burner			lb/hr							

DDI CIP	EACH ITV NAME	PERMIT ISSUANCE	BDOCECC NAME	PRIMARY	THEOLIGIPATE	THEOLOGYPUT	BROCESS NOTES	CONTROL METHOD	EMISSION	LINIT	AVG TIME	EMISSION	UNIT	AVG TIME	STANDARAD	UNIT	AVG TIME
BLCID	FACILITY NAME	DATE	PROCESS NAME	FUEL	THROUGHPUT	THROUGHPUT UNIT	GENERATING CAPACITY: EACH OF THE FOUR GAS TURBINES HAS A NOMINAL	DESCRIPTION	LIMIT 1	UNIT	CONDITION	LIMIT 2	UNIT	CONDITION	EMISSION LIMIT	UNIT	CONDITION
							GENERATING CAPACITY OF 170 MW FOR GAS FIRING (180 MW FOR OIL FIRING). EACH OF THE FOUR HEAT RECOVERY STEAM GENERATORS (HRSOS) PROVIDES STEAM TO THE SINGLE STEAM TURBINE ELECTRICAL GENERATOR, WHICH HAS A NOMINAL CAPACITY OF 470 MW. THE TOTAL NOMINAL GENERATING										
							CAPACITY OF THE 4-ON-1 COMBINED CYCLE UNIT IS 1150 MW. FUELS: EACH GAS TURBINE WILL FIRE NATURAL GAS AS THE PRIMARY FUEL AND ULTRA LOW SULFUR (0.00) 5% SULFUR) DISTILLATE OIL AS A RESTRICTED										
			170 MW				ALTERNATE FUEL. EMISSIONS OF ALL POLLUTANTS INCREASE WITH THE FIRING OF OIL. THE APPLICANT REQUESTS 500 HOURS PER YEAR PER GAS TURBINE (OR EQUIVALENT) FOR OIL FIRING.	EMISSIONS OF SAM AND SO2 WILL BE MINIMIZED BY FIRING									
L-0263	FPL TURKEY POINT POWER PLANT	2/8/200	COMBUSTION TURBINE, 4 5 UNITS COMBINED	NATURAL GAS	170	MW	MODES OF OPERATION: STANDARD NORMAL OPERATION, WITH DUCT BURNER, POWER AUGMENTATION AND PEAKING.	NATURAL GAS AND RESTRICTING THE AMOUNTS OF ULTRA LOW SULFUR DISTILLATE OIL.	2	GR S/100 SCF GAS		0.001:	5 % S			0	NOT AVAILABLE
FL-0285	PROGRESS BARTOW POWER PLANT	1/26/200	CYCLE COMBUSTION TURBINE 7 SYSTEM (4-ON-1)	NATURAL GAS	1973	MMBTU/H	1876 MMBTU/HR WHEN FIRING DISTILLATE FUEL OIL. THE SYSTEM NOMINAL CAPACITY 1280 MW. EACH UNIT NOMINAL CAPACITY 215 MW (ISO) WITH DUCT-FIRED HEAT RECOVERY STEAM GENERATOR. 2117 MMBU/HR FUEL OIL.			GR S/100 SCF	NATURAL GAS	0.0	5 % 5	FUEL OIL BY WEIGHT			
L-0283	TOWERTEANT	1/20/200	/ STSTEM (4-O/V-1)	UAS	1972	WWB10/II				UAS	NATURAL GAS	0.0.	7/43	WEIGHT			
			COMBINED CYCLE COMBUSTION				EACH COMBINED CYCLE UNIT SYSTEM (TWO & disque, disque). A ON-16d sque, disque). WILL CONSIST OF: THERE NOMINAL 200 MEGAWATT MODEL 5016 (EAST THORE). THE COLING SYSTEMS, THREE SUPPLEMENTARY-FIRED HEAT RECOVERY STEAM GENERATORS, GINE MOMINAL 428 (MMSTU-HOUZE, LIHY) CAS-FIRED DUCT BURNER LOCATED WITHIN EACH OF THE THREE HERGÂS, THREE 14 FREE ET ENHAUST STACKS, ONE YE OF LEICH THE HERGÂS, THREE 14 FREE ET ENHAUST STACKS, ONE 26 CELL THE CONTROL THE THREE HERGÂS, THREE 14 FREE ET ENHAUST STACKS, ONE 26 CELL THE										
FL-0286	FPL WEST COUNTY ENERGY CENTER	1/10/200		NATURAL GAS	2333	MMBTU/H	MECHANICAL DRAFT COOLING TOWER; AND A COMMON NOMINAL 500 MW STEAM-ELECTRICAL GENERATOR.	LOW SULFUR FUELS	2	GR S/100 SCF GAS		0.001:	5 % S			0	
*IL-0112	NELSON ENERGY CENTER	12/28/201	Electric Generation Facility	Natural Gas		MW each	Two combined cycle combustion turbines followed by HRSGs with capability for supplemental fuel firing in HRSG for each combustion turbine using duct burners. EACH TURBINE IS EQUIPED WITH DBY LOW NOX BURNERS, NATURAL GAS		0.0062	LB/MMBTU	HOURLY AVERAGE		0			0	
	ST. JOSEPH ENEGRY		FOUR (4) NATURAL GAS COMBINED CYCLE COMBUSTION	NATURAL			EACH TURBNE IS EQUIPED WITH DRY LOW NOX BURNERS, NATURAL GAS FIRED DUCT BURNERS, AND A HEAT RECOVERY STEAM GENERATOR BENTIFIED AS HRSGIR. NOX EMISSIONS CONTROLLED BY SELECTIVE CATALLYTIK REDUCTION SYSTEMS (SCRIPI) ALONG WITH CO AND VOC EMISSIONS CONTROLLED BY OXIDATION CATAYLIST SYSTEMS (CATHRI IN EACH TURBNE). EACH STROKE HAS CONTRIOUSE BUSSIONS ONTROLLED BY OXIDATION CATAYLIST SYSTEMS (CATHRI IN EACH TURBNE). EACH STROKE HAS CONTRIOUSE MISSIONS MONTORS FOR			GR S/100 SCF							
*IN-0158	CENTER, LLC	12/3/201	2 TURBINES	GAS	2300	MMBTU/H	NOX AND CO. COMBINED NOMIAL POWER OUTPUT IS 1.350 MW.	FUEL SPECIFICATION	0.75	GAS			0			0	
LA-0136	PLAQUEMINE COGENERATION FACILITY	7/23/200	(4) GAS TURBINES/DUCT 8 BURNERS TWO COMBINED	NATURAL GAS	2876	MMBTU/H	VISUAL INSPECTION FOR OPACITY ON A WEEKLY BASIS, STACK TESTS FOR PM, NOX, SO2, OPACITY, CO EMISSION POINTS GT-500, -600, -700, -800.	LOW SULFUR FUELS WITH MAXIMUM SULFUR CONTENT OF 5 GR/100 SCF.	40.7	lb/hr	HOURLY MAXIMUM	53.	7 T/YR	ANNUAL MAXIMUM	3.	PPMVD @ 15% O2	ANNUAL AVERAGE
LA-0224	ARSENAL HILL POWER PLANT	3/20/200	CYCLE GAS TURBINES	NATURAL GAS	2110	MMBTU/H	CTG-1 TURBINE/DUCT BURNER (EQT012) CTG-2 TURBINE/DUCT BURNER(EQT013)	USE LOW-SULFUR PIPELINE- QUALITY NATURAL GAS AS FUEL	12.06	lb/hr	MAX		0			0	
*MA-0039	SALEM HARBOR STATION REDEVELOPMENT	1/30/201-	Combustion Turbine 4 with Duct Burner	Natural Gas	2449	MMBtu/hr	two 315 MW (nominal) GE Energy 7F Series 5 Rapid Response Combined Cycle Combustion Turbines with Duct Burners and 31 MW (estimated) steam turbine generators		0.3	PPMVD	1 HR AVG, DOES NOT APPLY DURING SS	0.001	5 LB/MMBTU	I HR AVG, DOE NOT APPLY DURING SS	S	0	
	WILDCAT POINT		2 COMBINED CYCLE COMBUSTION TURBINES, WITH				TWO MITSUBISHI &Isquo &Isquo &Isquo Model COMBUSTION TURBINE GENERATORS (CTS) WITH A NOMINAL GENERATING CAPACITY OF 270 MW CAPACITY EACH, COUPLED WITH A HEAT RECOVERY STEAM GENERATOR (HRSG) EQUIPPED WITH DUCT BURNERS, DRY LOW-NOX COMBUSTORS,	EXCLUSIVE USE OF PIPELINE QUALITY NATURAL GAS AND			3-HOUR BLOCK						
*MD-0042	GENERATION FACILITY	4/8/201	4 DUCT FIRING COMBINED CYCLE	GAS	1000	MW	SELECTIVE CATALYTIC REDUCTION (SCR), OXIDATION CATALYST Natural Gas Usage <= 33,691 MMft^3/yr	EFFICIENT TURBINE DESIGN	8.2	lb/hr	AVERAGE	· ·	0			0	
	PSEG FOSSIL LLC SEWAREN GENERATING		COMBUSTION TURBINE WITH DUCT BURNER -			MMCUBIC FT PER	per 365 consecutive day period, rolling one day basis (per two Siemens turbines and two associated duct burners) The heat input rate of the Siemens turbine will be 2,356 MMBtu/ht(HHV) with a 62.1 duct				AVERAGE OF THREE ONE						
*NJ-0081	STATION	3/7/201	4 SIEMENS COMBINED CYCLE	Natural Gas	33691	YEAR	burner MMBtu/hr(HHV). Natural Gas Usage <= 33,691 MMft^3/yr	Use of natural gas a clean burning fuel	5.1	lb/hr	HOUR TESTS	· '	0			0	
	PSEG FOSSIL LLC		COMBUSTION TURBINE WITH DUCT BURNER -				Natural Usas Cosage (~ 53,091 Monte: Siyr per 365 consecutive day period, rolling one day basis (per two turbines and two duct burners)				AVERAGE OF						
*NJ-0081	SEWAREN GENERATING STATION	3/7/201-	GENERAL 4 ELECTRIC	Natural gas	33691	MMCUF/year.	The heat input rate of each General Electric combustion each turbine will be 2,312 MMBtu/hr(HHV) with a 164.4 MMBtu/hr duct burner	Use of natural gas only as a clean burning fuel	g 5.2	lb/hr	THREE ONE HOUR TESTS		0			0	
	WEST DEPTFORD ENERGY		Combined Cycle Combustion Turbine				This is a 427 MW Siemens Combined Cycle Turbine with duct burner Heat Input rate of the turbine = 2276 MMbtu/hr (HHV) Heat Input rate of the Duct burner=777 MMbtu/hr(HHV)				AVERAGE OF THREE ONE						
*NJ-0082	STATION CAITHNES BELLPORT	7/18/201-	4 with Duct Burner	Natural Gas NATURAL	20282	MMCF/YR	The fuel use of 20,282 MMCF/YR is for three turbines and three Duct burners.	Use of natural gas a clean burning fuel	6.56	lb/hr	HOUR TESTS		0			0	
NY-0095	ENERGY CENTER	5/10/200	6 TURBINE	GAS	2221	MMBUT/H	COMBINED CYCLE WITH DUCT FIRING UP TO 494 MMBTU/H Two Siemens 2932 MMBtu/H combined cycle combustion turbines , both with 300 MMBtu/H	LOW SULFUR FUEL	0.0011	LB/MMBTU		-	0		-	0	
	OREGON CLEAN ENERGY		2 Combined Cycle Combustion Turbines-Siemens,			larger w	duct burners, with dry low NOx combustors, SCR, and catalytic oxidizer. Will install either 2 Siemens or 2Mitsubishi, not both (not determined). Short term limits are different with and without duct burners.	low sulfur fuel, only burning natural gas		LDAMET!			Tara	PER ROLLING 1	2-		
*OH-0352	CENTER	6/18/201	with duct burners	Natural Gas	51560	MMSCF/rolling 12-MO	This process with duet burners. There are 2 combined cycle natural gas-fired combustion turbine generators (CTGs) with heat recovery steum generators (HRSG) identified as EUCTGHRSGI & EUCTGHRSG2 in the flexible goup FGCTGHRSG. The total hours for startup and shatdown for each train shall not exceed 500 hours per 12-month folling time period.	with 0.5 GR/100 SCF	0.0014	LB/MMBTU		34.:	2 T/YR	MONTHS			
MI-0423	INDECK NILES, LLC	01/04/2017 ACT	FGCTGHRSG (2 Combined Cycle CTGs with HRSGs)	Natural gas	8322	MMBTU/H	The throughput capacity is 3421 MMBTU/H for each turbine, and 740 MMBTU/H for each duct burner for a combined throughput of 4161 MMBTU/H or 8322 MMBTU/H for both trains.	Good Combustion Practices and the use of pipeline quality natural gas.	11.5	LB/H	TEST PROTOCOL WILL SPECIFY AVG TIME	0.0	6 LB/MMBTU	TEST PROTOCOL WILL SPECIFY AVG TIME		D	
			FG-TURB/DB1-3 (3 combined cycle combustion turbine and heat recovery				Three (3) combined-cycle combustion turbine (CT) / heat recovery steam generator (HRSG) trains. Each CT is a natural gas fired Misubishi model 501G, equipped with dry low NOx	Use of clean fuel (natural gas) with a fuel			NAT GAS			HOURLY: EACH			
*MI-0432	NEW COVERT GENERATING FACILITY	07/30/2018 ACT	steam generator trains)	Natural gas	1230	MW	combustor and inlet air evaporative cooling. Each HRSG includes a natural gas fired duct burner with a 256 MMBtu/hr heat input capacity and a dry low NOx burner.	sulfur limit of 0.8 grains per 100 standard cubic feet of natural gas.	d	GR/100 SCF	BURNED IN FG- TURB/DB1-3	0.0	6 LB/MMBTU	CT/HRSG TRAIN	ų;	0	$oxed{oxed}$

RRI CID	FACILITY NAME	PERMIT ISSUANCE DATE	PROCESS NAME	PRIMARY	THROUGHPUT	THROUGHPUT UNIT	p BROCESS NOTES	CONTROL METHOD DESCRIPTION	EMISSION LIMIT 1	UNIT	AVG TIME CONDITION	EMISSION LIMIT 2	UNIT	AVG TIME CONDITION	STANDARAD EMISSION LIMIT	UNIT	AVG TIME CONDITION
KDLCID	FACILITY NAME	DATE	EUCTGHRSG	FUEL	InkouGhrui	THROUGHFUT UNIT	PROCESS NOTES	DESCRIPTION	LIMIT I	UNII	CONDITION	LIMIT 2	UNII	CONDITION	EMISSION LIMIT	JAH	CONDITION
			(South Plant): A				A combined-cycle natural gas-fired combustion turbine generator (CTG) with heat recovery										1
			combined cycle	1			steam generator (HRSG) in a 1x1 configuration with a steam turbine generator (STG) for a										1
			natural gas-fired	1			nominal 500 MW electricity production. The CTG is a H-class turbine with a rating of 3,080										1
			combustion turbine generator with heat	1			MMBTU/H (HHV). The HRSG is equipped with a natural gas-fired duct burner rated at 755 MMBTU/H (HHV) at ISO conditions to provide heat for additional steam production. The										1
	MEC NORTH, LLC AND		recovery steam	1			HRSG is not capable of operating independently from the CTG. The CTG/HRSG is equipped	Good combustion proctices and the use of						FUEL SUPPLIER			1
*MI-0433	MEC SOUTH LLC	06/29/2018 ACT	generator.	Natural gas	500	MW	with dry low NOx burner (DLNB), SCR and an oxidation catalyst.	pipeline quality natural gas.	6.6	LB/H	HOURLY	0.	.6 GR S/100 SCF	RECORDS	0		1
							Nominal 500 MW electricity production. Turbine rating of 3,080 MMBTU/hr (HHV) and										
			EUCTGHRSG	1			HRSG duct burner rating of 755 MMBTU/hr (HHV).										1
			(North Plant): A	1			A combined-cycle natural gas-fired combustion turbine generator (CTG) with heat recovery										1
			combined-cycle	1			steam generator (HRSG) in a 1x1 configuration with a steam turbine generator (STG) for a										1
			natural gas-fired	1			nominal 500 MW electricity production. The CTG is a H-class turbine with a rating of 3,080										1
			combustion turbine	1			MMBTU/hr (HHV). The HRSG is equipped with a natural gas-fired duct burner rated at 755										1
	I		generator with heat	1			MMBTU/hr (HHV) at ISO conditions to provide heat for additional steam production. The							FUEL SUPPLIER			1
*MI-0433	MEC NORTH, LLC AND MEC SOUTH LLC	06/29/2018 ACT	recovery steam	Natural gas	500	MW	HRSG is not capable of operating independently from the CTG. The CTG/HRSG is equipped with dry low NOx burner (DLNB), SCR, and an oxidation catalyst.	Good combustion practices and the use of pipeline quality natural gas.	6.6	LB/H	HOURLY		.6 GR S/100 SCF	RECORDS			1
·M1-0433	MEC SOUTH LLC	06/29/2018 & BSD;AC1	COMBUSTION	Naturai gas	300	J MW	with dry low NOX burner (DENB), SCR, and an oxidation catalyst.	pipenne quanty naturai gas.	0.0	LB/II	HOURL1	0.	.0 CR 5/100 SCF	RECORDS	0		$\overline{}$
			TURBINE	1													1
			GENERATOR	1													1
			WITH DUCT- FIRED HEAT	1							DURING NORMAL						1
			RECOVERY	1							OPERATION						1
	GREENSVILLE POWER		STEAM	1							INCLUDING						1
*VA-0325	STATION	06/17/2016 ACT	GENERATORS (3)	natural gas	322	MMBTU/HR	3227 MMBTU/HR CT with 500 MMBTU/HR Duct Burner, 3 on 1 configuration.	Low Sulfur fuel	0.0011	LB/MMBTU	SU/SD	18.	.7 T/YR	PER TURBINE	0		1
				T			Four GE 7FA combined cycle turbines, dry low NOx burners and selective catalytic reduction.	Ĭ				1					
			Turbines (4) (model				These limits are for each of the 4 turbines individually, while operating with the duct burners	Burning natural gas in an efficient									1
	DUKE ENERGY HANGING		GE 7FA) Duct	NATURAL			on. This permit is a modification to RBLC OH-0252 to remove hourly restrictions on duct	combustion turbine burning low sulfur				l .		PER ROLLING 1	2		1
*OH-0356	ROCK ENERGY	12/18/201	2 Burners On COMBUSTION	GAS	17:	2 MW	burners.	fuel	1.52	lb/hr		6.	.7 T/YR	MONTHS	0		
			TURBINE & amp;				Four GE 7FA combined cycle turbines, dry low NOx burners and selective catalytic reduction.										1
			HEAT RECOVERY	-			These limits are for each of the 4 turbines individually, while operating with the duct burners				SEE						1
			STEAM	NATURAL			on. This permit is a modification to RBLC OH-0252 to remove hourly restrictions on duct				POLLUTANT						1
OR-0041	WANAPA ENERGY CENTER	8/8/200	5 GENERATOR	GAS	2384.	MMBTU/H	burners.		0		NOTE		0		0		
							L										1
			Combined-cycle				Two combine cycle Turbines, each with a combustion turbine and heat recovery steam generator with duct burner. Each combined-cycle process will be rated at 468 MW or less.	The owner/operator will be using low									1
	MOXIE LIBERTY		Turbines (2) -				The heat input rating of each combustion gas turbine is 2890 MMBtu/hr (HHV) or less, and the	sulfur fuel with a sulfur content of 0.4						468 MW			1
PA-0278	LLC/ASYLUM POWER PL T	10/10/201	2 Natural gas fired	Natural Gas	327	MMBTU/H		grains per 100 sef.	0.0011	LB/MMBTU		3	5 lb/hr	POWERBLOCK	0		1
							GREEN POWER ONE WILL CONSIST OF TWO NOMINALLY RATED 35 MW GAS FIRED TURBINES AND TWO HEAT RECOVERY STEAM GENERATORS, EQUIPPED										1
							WITH 312 MMBTU/HR DUCT BURNERS. THE COMBUSTION TURBINES WILL										1
							ONLY BURN PIPELINE OUALITY SWEET NATURAL GAS. THE DUCT BURNERS	THE TURBINES WILL FIRE									1
							WILL BURN NATURAL GAS, COMPLEX GAS OR MIXTURES OF NATURAL GAS	NATURAL GAS AND THE DUCT									1
							AND COMPLEX GAS. STEAM PRODUCED IN THE HRSGS WILL BE USED IN THE	BURNERS WILL FIRE NATURAL									1
							CHOCOLATE BAYOU WORKS CHEMICAL COMPLEX. THE CHEMICAL COMPLEX	GAS AND COMPLEX GAS WITH A									1
			COGENERATION				WILL CONSUME APPROXIMATELY HALF OF THE ELECTRICAL OUTPUT	SULFUR CONTENT LESS THAN FIVE									1
			TRAIN 2 AND 3				PRODUCED BY THE TWO NEW TURBINES. EXCESS POWER PRODUCED BY THE	GRAINS PER 100 STANDARD CUBIC									1
	INEOS CHOCOLATE		(TURBINE AND DUCT BURNER	NATURAL			COMBUSTION TURBINES WILL BE SOLD TO THE GRID.	FEET ON AN HOURLY BASIS. THE NATURAL GAS AND COMPLEX GAS									1
TX-0497	BAYOU FACILITY	8/29/200	6 EMISSIONS)	GAS	3	MW	THE EMISSIONS ARE PER TRAIN.	WILL	12.66	lb/br		10.0	6 T/YR				1
176 0477	D.T. GO T.T.C.E.T.	0/2//200	WESTINGHOUSE/	G. LD			THE EMBOOTO FILE FIGURE	WILL	12.00	10111		10.0	I I I I		· ·		
			SIEMENS MODEL					STEAG POWER LLC REPRESENTS									1
			SW501F GAS					THE FIRING OF PIPELINE NATURAL									1
	NACOGDOCHES POWER		TURBINE W/ 416.5					GAS IN THE COMBUSTION									1
TX-0502	STERNE GENERATING FACILITY	6/5/200	MMBTU DUCT 6 BURNERS	NATURAL	100	MW		TURBINES AND DUCT FIRED HRSGS AS BACT FOR SO2.	7.1	lb/hr		10	8 T/YR				1
		0/3/200	Combined Cycle	2710	199				/.1		1	19.			1		
			Turbines (>25	1			Two power configuration options authorized	1		1		1					1
	EAGLE MOUNTAIN STEAM		MW) – natural	1			Siemens â€" 231 MW + 500 million British thermal units per hour (MMBtu/hr) duct burner	1		1		1					1
*TX-0751	ELECTRIC STATION	6/18/201	5 gas COMBINED	natural gas	210	MW	GE – 210 MW + 349.2 MMBtu/hr duct burner	+	40.66	lb/hr	+	35.6	2 T/YR		- 0		
			CYCLE TURBINE	1				1		1		1					1
	WARREN COUNTY POWER		&: DUCT	1			Emissions are for one of three units (Mitsubishi natural gas-fired combustion turbine (CT)	Natural Gas only, fuel has maximum		1		1					1
VA-0315	PLANT - DOMINION	12/17/201	0 BURNER, 3	Natural Gas	299	MMBTU/H	generator, Model M501 GAC).	sulfur content of 0.0003% by weight.	0.98	lb/hr	3 HR AVG.	0.000	3 LB/MMBTU	3 HR. AVG.	0		
	1		COMBUSTION	1	1												1
	BRUNSWICK COUNTY	l .	TURBINE	l		.l	Three (3) Mitsubishi M501 GAC combustion turbine generators with HRSG duct burners	L		l		1	.1				1
*VA-0321	POWER STATION	3/12/201	GENERATORS, (3)	Natural Gas	344	MMBTU/H	(natural gas-fired).	Low sulfur fuel	0.0011	LB/MMBTU	+	+	0	+	0		
			COMBUSTION	1				1		1		1					1
			TURBINE & amp;	1				1		1		1					1
			HEAT RECOVERY	1			THREE IDENTICAL CT & HSRG UNITS. EACH CT WILL HAVE AN ANNUAL	1		1							*SEE NOTES -
	BP CHERRY POINT		STEAM	NATURAL			AVERAGE CAPACITY RATING OF 1614 MMBTU/HR. EACH HRSG DUCT BURNER	LIMIT FUEL TYPE TO NATURAL		1							NOT
WA-0328	COGENERATION PROJECT	1/11/200	5 GENERATOR	GAS	17-	4 MW	WILL HAVE A MAXIMUM FIRING RATE OF 105 MMBTU/HR.	GAS	- 0				0	1	0		AVAILABLE-
	Footprint Power Salem Harbor Development LP		Combustion Turbine	Natural Gas	2.4	6 MW		Low Sulfur Fuels		Ha/har	1-hr average; Duc Burners On	0.001	5 lb/MMBtu	1-hr average; Duc Burners On			1
	Footprint Power Salem Harbor		Compusion rurbine	radual Gas	340			Down Sandii Fucis	3./	north .	1-hr average; Duc			1-hr average; Duc			$\overline{}$
	Development LP		Combustion Turbine	Natural Gas	34	6 MW		Low Sulfur Fuels	0.3	PPMVD	Burners On	0.0	l lb/MW-hr	Burners On			
	UGI Development Co/ Hunlock																
	Creek		1	Natural Gas	471.	2 MMBtu/hr			0.003	lb/MMBtu	1	1	1				
						lam.		1			0.0011						1
	Hess Newark Energy Center	1	Combustion Turbine	Natural Gas	226	6 MMBtu/hr 5 MMBtu/hr	firing NG with duct burner	+	0.00140	lb/hr lb/MMBtu	0.00110326	6	_	+			
	York Energy Center Block 2	6/15/201															

Table D-A-14 Sulfur Dioxide (SO2) RBLC Search - Combustion Turbines Firing Natural Gas (Without Duct Burning) Invenergy, LLC - Allegheny County Energy Center Project

BLCID	FACILITY NAME	PERMIT ISSUANCE DATE	PROCESS NAME	PRIMARY FUEL	THROUGHPUT	THROUGHPUT UNIT	PROCESS NOTES	CONTROL METHOD DESCRIPTION	EMISSION LIMIT 1	UNIT	AVG TIME CONDITION	EMISSION LIMIT 2	UNIT	AVG TIME CONDITION	STANDARAD EMISSION LIMIT	UNIT	AVG TIME CONDITION
DECID	LACILITI NAME		Combined-cycle	LOEL				Discoul HON		0.31	COMPTION	Landii 2	i contra	COMPTION	L. HISSION LIMIT	L.di	CONDITION
	OKEECHOBEE CLEAN		Combined-cycle electric generating				3-on-1 combined cycle unit. GE 7HA.02 turbines, approximately 350 MW per turbine. Total unit generating capacity is approximately 1,600 MW. Primarily fueled with natural gas.			GR. S/100 SCF	FOR NATURAL						
L-0356	ENERGY CENTER	3/9/2016	unit	Natural gas	3096	6 MMBtu/hr per turbine	Permitted to burn the base-load equivalent of 500 hr/yr per turbine on ULSD.	Use of low-sulfur fuels	2	GAS	GAS	0.001	% S IN ULSD	FOR ULSD	1	-	
FL-0363	DANIA BEACH ENERGY CENTER	12/4/2017	2-on-1 combined cycle unit (GE 7HA)	Natural oas	4000	0 MMBtu/hr	Two nominal 430 MW combustion turbines, coupled to a steam turbine generator	Clean fuels		,			,		,		
12 0303	CLIVILIC	12.42017	Combined Cycle	, i tuturur gus	4000			GOOD COMBUSTION PRACTICES,	,			,		ANNUAL.	,		
X-0788	NECHES STATION	3/24/2016	Combined Cycle & Cogeneration	natural gas	231	ı MW	CTGs to operate in simple cycle & combined cycle modes. 231 MW (Siemens) or 210 MW (GE) Simple cycle operations limited to 2,500 hr/yr.	LOW SULFUR FUEL	1	GR/100 SCF	HOURLY	0.25	GR/100 SCF	ANNUAL AVERAGE			
	DECORDOVA STEAM		Combined Cycle				2 CTGs to operate in simple cycle & combined cycle modes. 231 MW (Siemens) or 210 MW	GOOD COMBUSTION PRACTICES									
X-0789	ELECTRIC STATION	3/8/2016	& Cogeneration	natural gas	231	l MW	(GE). Simple cycle operations limited to 2,500 hr/yr.	AND LOW SULFUR FUEL		GR/100 SCF	HOURLY		GR/100 SCF	ANNUAL	-		
	PORT ARTHUR LNG		Refrigeration Compression					Dry low NOx burners, good combustion practices, pipeline quality sweet natural									
X-0790	EXPORT TERMINAL	2/17/2016	Turbines	natural gas	10	M TONNES/YR	Four GE Frame 7E gas turbines for refrigeration and compression at the site	gas fuel (low sulfur fuel)	5	GR/100 SCF		((
			Simple Cycle Electrical					practices -									
X-0790	PORT ARTHUR LNG EXPORT TERMINAL	2/17/2016	Generation Gas Turbines 15.210 Combined Cycle	natural gas	34	4 MW	Nine GE PGT25+G4 gas turbines for electrical generation at the site at 34 MW/turbine	Good combustion practices and use of low carbon, low sulfur fuel	2.96	LB/H		1.88	T/YR				
			Combined Cycle Turbine with Heat														
			Recovery Steam Generator, fired														
			Duct Burners, and														
X-0819	GAINES COUNTY POWER PLANT	4/28/2017	Steam Turbine Generator	NATURAL GAS	426	5 MW	Four Siemens SGT6-5000F5 natural gas fired combustion turbines with HRSGs and Steam Turbine Generators	Pipeline quality natural gas	1.54	GR/100 DSCF			,				
TX-0834	MONTGOMERY COUNTY	3/30/2018	Combined Cycle Turbine	NATURAL GAS		MMBTU/HR/UNIT		PIPELINE QUALITY NATURAL GAS		GR/100 DSCF							
1A-0854	POWER STATIOIN	3/30/2018	1 uroine	GAS	263	MIMB I U/HK/UNIT	Two Mitsubishi M501GAC turbines (without fast start) GENERATING CAPACITY: EACH OF THE FOUR GAS TURBINES HAS A NOMINAL	FIFELINE QUALITY NATUKAL GAS	<u> </u>	GRO 100 DSCF		· ·			1		
							GENERATING CAPACITY OF 170 MW FOR GAS FIRING (180 MW FOR OIL FIRING).										
							EACH OF THE FOUR HEAT RECOVERY STEAM GENERATORS (HRSGS) PROVIDES STEAM TO THE SINGLE STEAM TURBINE ELECTRICAL GENERATOR, WHICH HAS										
							A NOMINAL CAPACITY OF 470 MW. THE TOTAL NOMINAL GENERATING CAPACITY OF THE 4-ON-1 COMBINED CYCLE UNIT IS 1150 MW.										
							FUELS: EACH GAS TURBINE WILL FIRE NATURAL GAS AS THE PRIMARY FUEL AND ULTRA LOW SULFUR (0.0015% SULFUR) DISTILLATE OIL AS A RESTRICTED										
							ALTERNATE FUEL. EMISSIONS OF ALL POLLUTANTS INCREASE WITH THE FIRING OF OIL. THE APPLICANT REQUESTS 500 HOURS PER YEAR PER GAS	EMISSIONS OF SAM AND SO2 WILL									
			170 MW				TURBINE (OR EQUIVALENT) FOR OIL FIRING.	BE MINIMIZED BY FIRING									
	FPL TURKEY POINT		COMBUSTION TURBINE, 4	NATURAL			MODES OF OPERATION: STANDARD NORMAL OPERATION, WITH DUCT	NATURAL GAS AND RESTRICTING THE AMOUNTS OF ULTRA LOW		GR S/100 SCF							NOT
L-0263	POWER PLANT	2/8/2005	UNITS	GAS	170	MW	BURNER, POWER AUGMENTATION AND PEAKING.	SULFUR DISTILLATE OIL.	2	GAS		0.001	% S		(AVAILABLE
L-0265	HINES POWER BLOCK 4	6/8/2005	CYCLE TURBINE	NATURAL GAS	530	MW		CLEAN FUELS	2	GR S/100 SCF GAS	CONTINUOUS	0.03	% S	CONTINUOUS			
			COMBINED CYCLE														
	PROGRESS BARTOW		COMBUSTION TURBINE	NATURAL			1876 MMBTU/HR WHEN FIRING DISTILLATE FUEL OIL.			GR S/100 SCF				FUEL OIL BY			
L-0285	POWER PLANT	1/26/2007	SYSTEM (4-ON-1)	GAS	1972	MMBTU/H	THE SYSTEM NOMINAL CAPACITY 1280 MW. EACH UNIT NOMINAL CAPACITY 215 MW (ISO) WITH DUCT-FIRED HEAT RECOVERY STEAM GENERATOR.		2	GR S/100 SCF 2 GAS	NATURAL GAS	0.0	% S	WEIGHT	(
			300 MW COMBINED														
	CANE ISLAND POWER		CYCLE COMBUSTION	NATURAL						GR S/100 SCF							
L-0304	PARK	9/8/2008	TURBINE	GAS	1860	MMBTU/H	Basis for the emission standard is either NSPS Subpart KKKK or Department BACT	FUEL SPECIFICATIONS.	2	GAS GAS		((
							determinations.										
			Combine cycle				The BACT emission standards for NOX while operating in combined cycle are more stringent than the corresponding Subpart KKKK emissions standards of 15 and 42 ppmvd @15% O2 on			GR S/100 SCF							
L-0337	POLK POWER STATION	10/14/2012	power block (4 on 1)	natural gas	1160	MW	a 30-day rolling average for natural gas and fuel oil, respectively. EACH TURBINE IS EQUIPED WITH DRY LOW NOX BURNERS, NATURAL GAS		2	GAS		0.001	% S				
			FOUR (4)				FIRED DUCT BURNERS, AND A HEAT RECOVERY STEAM GENERATOR										
			NATURAL GAS COMBINED				IDENTIFIED AS HRSG#. NOX EMISSIONS CONTROLLED BY SELECTIVE CATALYTIC REDUCTION SYSTEMS (SCR##) ALONG WITH CO AND VOC										
	ST. JOSEPH ENEGRY		CYCLE COMBUSTION	NATURAL			EMISSSIONS CONTROLLED BY OXIDATION CATAYLST SYSTEMS (CAT##) IN EACH TURBINE. EACH STACK HAS CONTINUOUS EMISSIONS MONITORS FOR			GR S/100 SCF							
IN-0158	CENTER, LLC	12/3/2012	TURBINES	GAS	2300	MMBTU/H	NOX AND CO. COMBINED NOMIAL POWER OUTPUT IS 1.350 MW.	FUEL SPECIFICATION	0.75	GAS		((
A-0192	CRESCENT CITY POWER	6/6/2005	GAS TURBINES - 187 MW (2)		2006	6 MMBTU/H		USE OF LOW SULFUR NATURAL GAS, 1.8 GRAINS PER 100 SCF	10.1	l lb/hr	HOURLY MAXIMUM	44.3	T/YR	ANNUAL MAXIMUM			
			2 COMBINED CYCLE														
			COMBUSTION TURBINES,														
	WILDCAT POINT		WITHOUT DUCT	NATURAL				EXCLUSIVE USE OF PIPELINE			3-HOUR BLOCK						
MD-0042	GENERATION FACILITY	4/8/2014	FIRING TURBINE,	GAS	270	MW		QUALITY NATURAL GAS USE OF CLEAN FUELS, NATURAL	6.3	ib/hr	AVERAGE	-		1	1		
J-0074	WEST DEPTFORD ENERGY	5/6/2009	COMBINED CYCLE	NATURAL GAS	17709	8 MMFT3/YR		GAS AND ULTRA LOW SULFUR DISTILLATE OIL	5.64	5 lb/hr			,		,		
0.0074	TEST DEI HORD ENERGI	5/6/2009	CICLE	0.10	17290	Januar I St I K	This is a 427 MW Siemens Combined Cycle Turbine with duct burner	DISTRIBUTE	3.00	, ioili	AVERAGE OF	<u> </u>			1		
			Combined Cycle				Heat Input rate of the turbine = 2276 MMbtu/hr (HHV) Heat Input rate of the Duct burner= 777 MMbtu/hr(HHV)				THREE ONE						
NJ-0082	WEST DEPTFORD ENERGY STATION	7/18/2014	Combustion Turbine without Duct Burner	Natural Gas	2028	MMCF/YR	The fuel use of 20.282 MMCF/YR is for three turbines and three Duct burner	Use of natural gas a clean burning fuel	4 94	lb/hr	HOUR STACK TESTS		,				
			2 Combined Cycle		20203		The fuel use of 20,282 MMCF/YR is for three turbines and three Duct burner. Two Missubish 2933 MMBurH combined cycle combustion turbines, both with 300 MMBurH duct burners, with dry low NOx combustors, SCR, and eatalytic oxidizer. Will	The same and the s	1.5			·			1		
			Combustion				install either 2 Siemens or 2Mitsubishi, not both (not determined).										
OH-0352	OREGON CLEAN ENERGY CENTER	6/18/2013	Turbines-Siemens, without duct burners	Natural Gas	515600	MMSCF/rolling 12- months	Short term limits are different with and without duct burners. This process without duct burners.	low sulfur fuel, only burning natrual gas with GR/100 SCF	0.0014	LB/MMBTU		34.2	T/YR	PER ROLLING I MONTHS	2		
							Two Mitsubishi 2932 MMBtu/H combined cycle combustion turbines , both with 300										
			2 Combined Cycle				MMBtu/H duct burners, with dry low NOx combustors, SCR, and catalytic oxidizer. Will										
	1	I	Combustion Turbines-Mitsubishi,				install either 2 Siemens or 2Mitsubishi, not both (not determined). Short term limits are different with and without duct burners.	low sulfur fuel, only burning natural gas				1		PER ROLLING 1	2.		
	OREGON CLEAN ENERGY		I urbines-Mitsubishi.														
OH-0352	OREGON CLEAN ENERGY CENTER	6/18/2013	without duct burners	Natural Gas	47913	7 MMSCF/rolling 12-MO	This process without duct burners.	with 0.5 GR/100 SCF	0.0014	LB/MMBTU		34.2	T/YR	MONTHS	(
OH-0352	OREGON CLEAN ENERGY CENTER	6/18/2013	without duct burners		47917	7 MMSCF/rolling 12-MO	This process without duct burners.	with 0.5 GR/100 SCF	0.0014	LB/MMBTU		34.2	T/YR	MONTHS			

Table D-A-14 Sulfur Dioxide (SO2) RBLC Search - Combustion Turbines Firing Natural Gas (Without Duct Burning) Invenergy, LLC - Allegheny County Energy Center Project

		PERMIT ISSUANCE		PRIMARY				CONTROL METHOD	EMISSION		AVG TIME	EMISSION		AVG TIME	STANDARAD		AVG TIME
			ROCESS NAME	FUEL	THROUGHPUT	THROUGHPUT UNIT	PROCESS NOTES	DESCRIPTION	LIMIT 1	UNIT	CONDITION	LIMIT 2	UNIT	CONDITION	EMISSION LIMIT	UNIT	CONDITION
	CITY PUBLIC SERVICE JK		PRUCE POWER														
	SPRUCE ELECTRICE	G	ENERATOR														
TX-0516	GENERATING UNIT 2	12/28/2005 U	NIT NO 2						21	880 lb/hr		2102	T/YR		0		
							(2) GE7FA at 195 MW each,										
							(1) steam turbine at 200 MW.										
	THOMAS C. FERGUSON		latural gas-fired				Each turbine is equipped with an unfired heat recovery steam generator (HRSG), which										
TX-0600	POWER PLANT	9/1/2011 tu	ırbines	natural gas	39	0 MW	provides steam for the steam turbine.	pipeline quality natural gas	27	.07 lb/hr	1-H	0			0		
	FREEPORT LNG						The exhaust heat from the turbine will be used to heat a heating medium which is used to										
*TX-0678	PRETREATMENT FACILITY	7/16/2014 C	ombustion Turbine	natural gas	8	7 MW	regenerate rich amine from the acid gas removal system.		3	.68 lb/hr		0			0		
							Four GE 7FA combined cycle turbines, dry low NOx burners and selective catalytic reduction.										
			ombined-cycle gas				These limits are for each of the 4 turbines individually, while operating with the duct burners										
	COLORADO BEND ENERGY		arbine electric				on. This permit is a modification to RBLC OH-0252 to remove hourly restrictions on duct			GR S/100 SCF			GR S/100 SCF				
*TX-0730	CENTER		enerating facility	natural gas	110	0 MW	burners.	efficient combustion, natural gas fuel		2 GAS	1-HOUR	0.5	GAS	ANNUAL	0		
			OMBUSTION														
	BRUNSWICK COUNTY		URBINE				Three (3) Mitsubishi M501 GAC combustion turbine generators with HRSG duct burners										
*VA-0321	POWER STATION	3/12/2013 G	ENERATORS, (3)	Natural Gas	344	2 MMBTU/H	(natural gas-fired).	Low sulfur fuel	0.00	011 LB/MMBTU		0			0		
													GR S/100 SCF				
	Catoctin Power LLC	C	ombustion Turbine	Natural Gas	17	0 MW		Pipeline quality low sulfur NG	6	.17 lb/hr	Monthly average	1	GAS	Sulfur content			
	Footprint Power Salem Harbor										1-hr average; Duct			1-hr average; Duct			
	Development LP	C	ombustion Turbine	Natural Gas	34	6 MW		Low Sulfur Fuels		3.5 lb/hr	Burners Off		lb/MMBtu	Burners Off			
	Footprint Power Salem Harbor Development LP					6 MW					1-hr average; Duct			1-hr average; Duct			
\vdash	Development LP	С	ombustion Turbine	Natural Gas	34	6 MW		Low Sulfur Fuels		0.3 PPMVD	Burners Off	0.01	LB/MWh	Burners Off			
	Cricket Valley Energy Center		ombustion Turbine		100	0 MW			0.00	015 lb/MMBtu	1-hr average						
	Cricket Valley Energy Center	C	ombustion Turbine	Natural Gas	100	0 MW			0.00	J15 lb/MMBtu	1-hr average						
	Tenaska Partners LLC		ombustion Turbine	Natural Con	214	7 MMBtu/hr				2.7 lb/hr							
-	UGI Development Co/ Hunlock	C	ombustion Turbine	i ivaturai Gas	314	/ MMDtwnr				2./ HO/HF							
1 '	Creek			Natural Gas	471	2 MMBtu/hr			0.0	003 Ib/MMRtu		1		1			
	Creek			Naturai Gas	4/1	2 MMBtwnr			0.0	JUS TO/MINIDIU							
1 '	Hess Newark Energy Center	l .	ombustion Turbine	Natural Gas	222	0 MMBtu/hr			1	2.8 lb/hr		1		1			
	York Energy Center Block 1	L C	omousion Turbine	Ivaturar Gas		4 MMBtu/hr				2.8 lb/mr 003 lb/MMBtu	hourly basis						
	York Energy Center Block 2	6/15/2015					firing NG without duct burner			149 lb/MMBtu	mounty oddis						
	Calpine/Bethlehem Energy	6/13/2013			2312	JIMMIMI	ming NO without duct bullet		0.00	147 IOWINDU	1	1					
1 '	Center				12	2 MW			0.0	003 lb/MMBtu		1	1	1		l	1

Table D-A-15

Sulfuric Acid (H₂SO₄) RBLC Search - Combustion Turbines Firing Natural Gas (With Duct Burning) Invenergy, LLC - Allegheny County Energy Center Project

		PERMIT ISSUANCE		PRIMARY				CONTROL METHOD	EMISSION		AVG TIME	EMISSION		AVG TIME STANDARA		AVG TIME
RBLCID	FACILITY NAME KILLINGLY ENERGY	DATE	PROCESS NAME Natural Gas w/Duct	FUEL	THROUGHPUT	THROUGHPUT	UNIT PROCESS NOTES	DESCRIPTION	LIMIT 1	UNIT	CONDITION	LIMIT 2	UNIT	CONDITION EMISSION	IMIT UNIT	CONDITION
CT-0161	CENTER	06/30/2017 AC	Firing SCPS Combined	Natural Gas	263	9 MMBtu/hr	Duct burner MRC is 946 MMbtu/hr	Low Sulfur Fuels	0	LB/MMBTU			0		0	
LA-0313	ST. CHARLES POWER STATION	08/31/2016 AC	SCPS Combined Cycle Unit 1A	Natural Gas	360	5 MMBTU/hr		Use of low sulfur fuel	1 21	LB/H	HOURLY MAXIMUM	5	28 T/YR	ANNUAL MAXIMUM	0	
	ST. CHARLES POWER		SCPS Combined								HOURLY			ANNUAL	- 0	
LA-0313	STATION	08/31/2016 AC	Cycle Unit 1B	Natural Gas	362	5 MMBTU/hr		Use of low sulfur fuels	1.21	LB/H	MAXIMUM	5.	28 T/YR	MAXIMUM	0	
			combined cycle	1												
			combustion turbine and heat recovery				Three (3) combined-cycle combustion turbine (CT) / heat recovery steam generator (HRSG) trains. Each CT is a natural gas fired Mitsubishi model 501G, equipped with dry low NOx	Use of clean fuel (natural gas) with a fuel						NAT GAS		
	NEW COVERT		steam generator				combustor and inlet air evaporative cooling. Each HRSG includes a natural gas fired duct burner with a 256 MMBtu/hr heat input capacity and a dry low NOx burner.	sulfur limit of 0.8 grains per 100 standard			HOURLY; EACH			BURNED IN FG-		
*MI-0432	GENERATING FACILITY	07/30/2018 AC	trains)	Natural gas	123	0 MW	burner with a 256 MMBtu/hr heat input capacity and a dry low NOx burner.	cubic feet of natural gas.	1	LB/H	CT/HRSG TRAIN	(0.8 GR/100 SCF	TURB/DB1-3	0	
			(South Plant): A				A combined-cycle natural gas-fired combustion turbine generator (CTG) with heat recovery									
			combined cycle natural gas-fired				steam generator (HRSG) in a 1x1 configuration with a steam turbine generator (STG) for a nominal 500 MW electricity production. The CTG is a H-class turbine with a rating of 3,080									
			combustion turbine				MMBTU/H (HHV). The HRSG is equipped with a natural gas-fired duct burner rated at 755									
			generator with heat				MMBTU/H (HHV) at ISO conditions to provide heat for additional steam production. The	L								
*MI-0433	MEC NORTH, LLC AND MEC SOUTH LLC	06/29/2018 AC	recovery steam	Natural gas	50	0 MW	HRSG is not capable of operating independently from the CTG. The CTG/HRSG is equipped with dry low NOx burner (DLNB), SCR and an oxidation catalyst.	Good combustion practices and the use of pipeline quality natural gas.	2.7	LB/H	HOURLY		0		0	
								,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,								
							Nominal 500 MW electricity production. Turbine rating of 3,080 MMBTU/hr (HHV) and HRSG duct burner rating of 755 MMBTU/hr (HHV).									
			EUCTGHRSG													
			(North Plant): A combined-cycle				A combined-cycle natural gas-fired combustion turbine generator (CTG) with heat recovery steam generator (HRSG) in a 1x1 configuration with a steam turbine generator (STG) for a									
			natural gas-fired				nominal 500 MW electricity production. The CTG is a H-class turbine with a rating of 3,080									
			combustion turbine				MMBTU/hr (HHV). The HRSG is equipped with a natural gas-fired duct burner rated at 755 MMBTU/hr (HHV) at ISO conditions to provide heat for additional steam production. The									
	MEC NORTH, LLC AND		recovery steam				HRSG is not capable of operating independently from the CTG. The CTG/HRSG is equipped	Good combustion practices and the use of	-							
°MI-0433	MEC SOUTH LLC	06/29/2018 AC	generator.	Natural gas	50	0 MW	HRSG is not capable of operating independently from the CTG. The CTG/HRSG is equipped with dry low NOx burner (DLNB). SCR. and an oxidation catalyst. Two (2) combined-cycle natural gas-fired combustion turbine generators, each with a heat	pipeline quality natural gas.	2.7	LB/H	HOURLY		0		0	
				1			1 wo (2) combined-cycle natural gas-tired combustion turbine generators, each with a near recovery steam generator (CTGHRSG).									
			FGCTGHRSG			1										
			(EUCTGHRSG1				Plant nominal 1,150 MW electricity production. Turbines are each rated at 3,658 MMBTU/H and HRSG duct burners are each rated at 800 MMBTU/H.							HOURLY: EACH		
	BELLE RIVER COMBINED		&					Good combustion practices and the use of			HOURLY; EACH			UNIT W/O DUCT		
°MI-0435	CYCLE POWER PLANT	07/16/2018 AC	EUCTGHRSG2)	Natural gas		0	The HRSGs are not capable of operating independently from the CTGs.	pipeline quality natural gas.	0.0013	LB/MMBTU	UNIT	5.	04 LB/H	BURNER FIRING	0	
			Combined Cycle								AV OF THREE					
	MIDDLESEX ENERGY		Combustion Turbine firing Natural Gas					USE OF NATURAL GAS A LOW			ONE H STACK TESTS EVERY 5					
NJ-0085	CENTER, LLC	07/19/2016 AC		natural gas	400	0 h/yr		SULFUR FUEL	4.26	LB/H	YR		0		0	
	TENASKA PA PARTNERS/WESTMORELA		Large combustion					Low sulfur fuel and good combustion								
*PA-0306	ND GEN FAC	02/12/2016 AC	turbine	Natural Gas		0	This process entry is for operations with the duct burner. Limits entered are for each turbine. Emission limits are for each turbine operating with duct burner and do not include	practices	0.0006	LB/MMBTU	HHV		.8 LB/HR		0	
							Emission limits are for each turbine operating with duct burner and do not include startup/shutdown emissions. Tons per year limits is a cumulative value for all three CCCT.									
							CEMS for NOx, CO, and O2.									
							Each CCCT and duct burner have 5 operational scenarios: 1 CCCT with duct burner fired - fueled by NG only									
							2 CCCT with duct burner fired - fueled by NG blend with ethane									
	CPV FAIRVIEW ENERGY		Combustion turbine and HRSG with duct				3 CCCT without duct burner fired - fueled by NG only	ULSD fuel (CCCT only - duct burner is								
*PA-0310	CENTER CENTER	09/02/2016 AC	burner NG only COMBUSTION	Natural Gas	333	8 MMBtu/hr	4 CCCT without duct burner fired - fueled by NG blend with ethane 5 CCCT without duct burner fired - fueled by ULSD (Limited to emergency use only)	not fired with ULSD), good combustion practices	0.0014	LB/MMBTU			0		0	
			COMBUSTION TURBINE													
			GENERATOR													
			WITH DUCT- FIRED HEAT													
			RECOVERY													
	GREENSVILLE POWER		STEAM					L						12 MO ROLLING		
*VA-0325	STATION	06/17/2016 AC	GENERATORS (3)	natural gas	322	7 MMBTU/HR	3227 MMBTU/Hr CT with 500 MMBTU/Hr Duct Burner, 3 on 1 configuration. 500 MMBTU/hr Gas Turbine (Model: GE LM6000) rated at 52 MW and 155 MMBTU/hr	Low Sulfur fuel	0.0006	LB/MMBTU			9.9 T/YR	AVG	0	
	NRG ENERGY CENTER						500 MMBTU/hr Gas Turbine (Model: GE LM6000) rated at 52 MW and 155 MMBTU/hr Heat Recovery Steam Generator rated at 18 MW. The unit is required to operate a certified				1 HOUR					
*DE-0023	DOVER	10/31/201:	UNIT 2- KD1	Natural Gas	6:	5 MMBTU/H	CEMS and COMS.		0.12	lb/hr	AVERAGE 12 MONTH		0		0	
	GARRISON ENERGY										ROLLING					
DE-0024	CENTER	1/30/201	Unit 1 300 MW	Natural Gas	226	0 million BTUs			24.3	TONS	AVERAGE		0		0	
			COMBINED			1										
	CANE ISLAND POWER		CYCLE COMBUSTION	NATURAL						GR S/100 SCF						
FL-0304	PARK	9/8/200	TURBINE	GAS	186	0 MMBTU/H		FUEL SPECIFICATIONS	2	GAS			0		0	
	MARSHALLTOWN		Combustion turbine			1					AVERAGE OF 3 ONE-HOUR TEST			12-MONTH ROLLING		
*IA-0107	GENERATING STATION	4/14/2014	#2 -combined cycle	natural gas	225	8 mmBtu/hr	C. CHATTARRE IN FOLUMER WITH RR		0.0032	LB/MMBTU	RUNS	31	.3 TON/YR	TOTAL	0	
			FOUR (4)				EACH TURBINE IS EQUIPED WITH DRY LOW NOX BURNERS, NATURAL GAS FIRED DUCT BURNERS, AND A HEAT RECOVERY STEAM GENERATOR									
			NATURAL GAS	1		1	IDENTIFIED AS HRSG#. NOX EMISSIONS CONTROLLED BY SELECTIVE									
			COMBINED CYCLE			1	CATALYTIC REDUCTION SYSTEMS (SCR##) ALONG WITH CO AND VOC EMISSSIONS CONTROLLED BY OXIDATION CATAYLST SYSTEMS (CAT##) IN									
	ST. JOSEPH ENEGRY		COMBUSTION	NATURAL		1	EACH TURBINE. EACH STACK HAS CONTINUOUS EMISSIONS MONITORS FOR			GR S/100SCF						
*IN-0158	CENTER, LLC	12/3/2013	TURBINES	GAS	230	0 MMBTU/H	NOX AND CO. COMBINED NOMIAL POWER OUTPUT IS 1.350 MW.	FUEL SPECIFICATION	0.75	FUEL	*SEE NOTES		0		0	
			GAS TURBINES -	1				USE OF LOW SULFUR NATURAL			HOURLY			ANNUAL		
LA-0192	CRESCENT CITY POWER	6/6/200	187 MW (2) TWO COMBINED	-	200	6 MMBTU/H		GAS, 1.8 GRAINS PER 100 SCF USE OF LOW-SULFUR PIPELINE	8.5	lb/hr	MAXIMUM	31	.2 T/YR	MAXIMUM	0	
	ARSENAL HILL POWER		CYCLE GAS	NATURAL		1	CTG-1 TURBINE/DUCT BURNER (EQT012)	QUALITY NATURAL GAS AS FUEL								
LA-0224	PLANT	3/20/2009	TURBINES	GAS	21	0 MMBTU/H	CTG-2 TURBINE/DUCT BURNER(EQT013)	AND PROPER SCR DESIGN	1.85	lb/hr	MAX 1 HR AVG, DOES		0	1 HR AVG, DOES	0	
	SALEM HARBOR STATION		Combustion Turbine			1	two 315 MW (nominal) GE Energy 7F Series 5 Rapid Response Combined Cycle Combustion				NOT APPLY		PPMVD @ 15%	NOT APPLY		
*MA-0039	REDEVELOPMENT	1/30/2014	with Duct Burner	Natural Gas	244	9 MMBtu/hr	Turbines with Duct Burners and 31 MW (estimated) steam turbine generators		0.001	LB/MMBTU	DURING SUSD		0.1 02	DURING SUSD	0	
			2 COMBINED	1			TWO MITSUBISHI &Isquo&IsquoG&IsquoMODEL COMBUSTION TURBINE									
			CYCLE	1			GENERATORS (CTS) WITH A NOMINAL GENERATING CAPACITY OF 270 MW CAPACITY EACH, COUPLED WITH A HEAT RECOVERY STEAM GENERATOR									
					1	1	ICAPACITY EACH, COUPLED WITH A HEAT RECOVERY STEAM GENERATOR		1	1		1	1	1 1	- 1	1
	WILDCAT POINT		TURBINES, WITH	NATURAJ.			(HRSG) EQUIPPED WITH DUCT BURNERS, DRY LOW-NOX COMBUSTORS,	EXCLUSIVE USE OF PIPELINE			3-HOUR BLOCK					

Table D-A-15

Sulfuric Acid (H₂SO₄) RBLC Search - Combustion Turbines Firing Natural Gas (With Duct Burning) Invenergy, LLC - Allegheny County Energy Center Project

		PERMIT ISSUANCE		PRIMARY				CONTROL METHOD	EMISSION		AVG TIME	EMISSION		AVG TIME	STANDARAD		AVG TIME
RBLCID	FACILITY NAME	DATE	PROCESS NAME	FUEL	THROUGHPUT	THROUGHPUT UNIT		DESCRIPTION	LIMIT 1	UNIT	CONDITION	LIMIT 2	UNIT	CONDITION	EMISSION LIMIT	UNIT	CONDITION
			TURBINE, COMBINED CYCLE,				Each of these units have a natural gas-fired hear recovery steam generote and a natural gas-fired hear recovery steam generote and a natural gas-field duck burner. Each CT combusts natural gas as the primary fuel and very low-suffer No. 2 fael oil as a backup fuel. The use of fuel oil is limited to 1,200 hounser per year and only during the months of November through March, and is listed as a separate process. These units are listed	VERY LOW-SULFUR FUEL (NATURAL GAS) OR NO. 2 FUEL OIL									
			NATURAL GAS,	NATURAL			as a combined source (all three units) for each type of	(0.015% SULFUR									
NC-0101	FORSYTH ENERGY PLANT	9/29/2005	TURBINE & amp:	GAS	1844.	3 MMBTU/H	fuel.	CONTENT BY WEIGHT).	0		SEE NOTE	0			()	
			DUCT BURNER,														
			COMBINED CYCLE, NAT GAS,	NATURAL			Each of these units have a natural gas-fired HRSG & a natural gas fired duct burner. Limits for this process	USE OF LOW SULFUR FUEL									
NC-0101	FORSYTH ENERGY PLANT	9/29/2005	COMBINED	GAS	1844.	3 MMBTU/H	are for turbines and duct burners.	(NATURAL GAS)	0		SEE NOTE	0			()	
			CYCLE				Natural Gas Usage <= 33,691 MMft^3/yr										
	PSEG FOSSIL LLC		COMBUSTION TURBINE WITH				per 365 consecutive day period, rolling one day basis (per two Siemens turbines and two associated duct burners)										
*NJ-0081	SEWAREN GENERATING STATION	3/7/2014	DUCT BURNER - SIEMENS	Natural Gas	2260	MMCUBIC FT PER 1 YEAR	The heat input rate of the Siemens turbine will be 2,356 MMBtu/hr(HHV) with a 62.1 duct burner MMBtu/hr(HHV).	Use of natural gas a clean burning fuel	2.79	lls/lse							
10-0081	SIATION	3/1/2019	COMBINED	Natural Gas	3309	LILAK		Ose of natural gas a crean outning ruer	2.79	IOIII					,		1
	PSEG FOSSIL LLC		CYCLE COMBUSTION TURBINE WITH DUCT BURNER -				Natural Gas Usage <= 33,691 MMft^3/yr per 365 consecutive day period, rolling one day basis (per two turbines and two duet burners)										
*NJ-0081	SEWAREN GENERATING STATION	3/7/2014	GENERAL 4 ELECTRIC	Natural gas	3369	1 MMCUF/year.	The heat input rate of each General Electric combustion each turbine will be 2,312 MMRtu/br/HHV) with a 164.4 MMRtu/br duet burner.	Use of natural gas a clean burning fuel and a low sulfur fuel	2 93	lls/hr							
		3.7.2014			2309		MMBtuhr(HHV) with a 164.4 MMBtuhr duct burner This is a 427 MW Sienens Combined Cycle Turbine with duct burner Heat Input rate of the turbine = 2276 MMturhr (HHV)		1			1			,		1
			Combined Cycle				Heat Input rate of the turbine = 2276 MMbtu/hr (HHV) Heat Input rate of the Duct burner= 777 MMbtu/hr(HHV)										
*NJ-0082	WEST DEPTFORD ENERGY STATION	7/18/2014	Combustion Turbine with Duct Burner	Natural Gas	2028	2 MMCF/YR	The fuel use of 20,282 MMCF/YR is for three turbines and three Duct burners.	Use of natural gas a clean burning fuel	0.98	lb/hr		0				,	
	CAITHNES BELLPORT	5/10/2006	COMBUSTION	NATURAL		MMRUT/H			0.70	I B/MMRTU					1		1
NY-0095	ENERGY CENTER	5/10/2006	TURBINE	GAS	222	I MMBUT/H	COMBINED CYCLE WITH DUCT FIRING UP TO 494 MMBTU/H Four GE 7FA combined cycle turbines, dry low NOx burners and selective catalytic reduction.	LOWSULFUR FUEL	0.0004	LB/MMBTU		0		+	-	1	+
	DUKE ENERGY HANGING		Turbines (4) (model GE 7FA) Duct	NATURAL			These limits are for each of the 4 turbines individually, while operating with the duct burners on. This permit is a modification to RBLC OH-0252 to remove hourly restrictions on duct	Burning natural gas in an efficient combustion turbine and using low sulfur						PER ROLLING 1	,		
*OH-0356	ROCK ENERGY	12/18/2012	2 Burners On	GAS	17:	2 MW	burners.	fuel.	0.23	lb/hr		1.01	T/YR	MONTHS	(
			Mitsubishi M501- GAC combustion turbine, combined														
*OR-0050	TROUTDALE ENERGY CENTER, LLC	3/5/2014	cycle configuration with duct burner.	natural es	298	8 MMBtu/hr	or ULSD; Duct burner 499 MMBtu/hr, natural gas	Utilize only natural gas or ULSD fuel.				0					
																	1
			Combined-cycle				Two combine cycle Turbines, each with a combustion turbine and heat recovery steam generator with duct burner. Each combined-cycle process will be rated at 468 MW or less.										
PA-0278	MOXIE LIBERTY LLC/ASYLUM POWER PL T	10/10/2012	Turbines (2) - Natural gas fired	Natural Gas	327	7 MMBTU/H	The heat input rating of each combustion gas turbine is 2890 MMBtu/hr (HHV) or less, and the heat input rating of each supplemental duct burner is equal to 387 MMBtu/hr (HHV) or less.		0.0002	LB/MMBTU		1.5	LB/H	468 MW POWERBLOCK			
	MOXIE ENERGY LLC/PATRIOT		Combined Cycle Power Blocks 472				Two natural-gas-fired combined cycle powerblocks where each powerblock consists of a					-		TOTAL PM -			1
*PA-0286	GENERATION PLT	1/31/2013	3 MW - (2)	Natural Gas		0	two natural-gas-tired combined cycle powerblocks where each powerblock consists of a combustion turbine and heat recovery steam generator with duct burner.		0.0005	LB/MMBTU		2.4	T/YR	EACH UNIT	()	
*PA-0296	BERKS HOLLOW ENERGY ASSOC LLC/ONTELAUNEE	12/17/2013	Turbine, Combined Cycle, #1 and #2	Natural Gas	304	6 MMBtu/hr	Equipped with SCR and Oxidation Catalyst		2.97	T/YR		0.87	lb/hr				
			Turbine, COMBINED											BASED ON A 12- MONTH			1
	FUTURE POWER PA/GOOD		CYCLE UNIT								WITH DUCT			ROLLING			
*PA-0298	SPRINGS NGCC FACILITY	3/4/2014	4 (Siemens 5000)	Natural Gas	226	7 MMBtu/hr			3.4	lb/hr	BURNER	14.3	T/YR	TOTAL	()	
	INFOS CHOCOLATE		COGENERATION TRAIN 2 AND 3 (TURBINE AND	NATURAL			GREEN POWER ONE WILL CONSIST OF TWO NOMINALLY RATED 35 MW GAS FIRED TUBBINS AND TWO HEAT RECOVERY STEAM GENERATORS, EQUIPPED WITH 312 MMBTUJIR DUCT BURNERS. THE COMBUSTION TURBINSE WILL ONLY BURN PIPELINE QUALITY SWEET NATURAL GAS. THE DUCT BURNERS WILL BURN NATURAL GAS, COMPLEX GAS OR MIXTURES OF NATURAL GAS. AND COMPLEX GAS. STEAM PRODUCED IN THE HEAGS WILL BE USED IN THE CHOCOLATE BAYOU WORKS CHEMICAL COMPLEX. THE CHEMICAL COMPLEX WILL CONSUME APPROXIMATELY HALF OF THE LETCHLEAUGHLY PRODUCED BY THE TWO NEW TURBINES. EXCESS POWER PRODUCED BY THE COMBUSTION TURBINS WILL BE SOLD TO THE GROW.	THE TURBINES WILL FIRE NATURAL GAS AND THE DUCT BURNERS WILL FIRE NATURAL GAS AND COMPLEX GAS WITH A SULFUR CONTENT LESS THAN FIVE									
TX-0497	BAYOU FACILITY	8/29/2006	DUCT BURNER EMISSIONS)	GAS	3:	5 MW	THE EMISSIONS ARE PER TRAIN.	GRAINS PER 100 STANDARD CUBIC FEET ON AN HOURLY BASIS	1.94	lb/hr		1.54	T/YR		()	
			WESTINGHOUSE/ SIEMENS MODEL														
	NACOGDOCHES POWER		SW501F GAS TURBINE W/ 416.5														
L	STERNE GENERATING		MMBTU DUCT	NATURAL													
TX-0502	FACILITY CITY PUBLIC SERVICE JK	6/5/2006	SPRUCE POWER	GAS	19	0 MW			1.3	lb/hr		13.6	T/YR		-		+
TX-0516	SPRUCE ELECTRICE GENERATING UNIT 2	12/28/2005	GENERATOR UNIT NO 2						4.4	lb/br		120	T/YR				
2250310	GENERATING COST 2	12/28/2003	JOHN NO Z				(2) GE7FA at 195 MW each,		-	no nd		129			,		1
	THOMAS C. FERGUSON		Natural gas-fired				(1) steam turbine at 200 MW. Each turbine is equipped with an unfired heat recovery steam generator (HRSG), which										
TX-0600	POWER PLANT	9/1/2011	l turbines	natural gas	39	0 MW	provides steam for the steam turbine. The gas turbines will be one of three options:	pipeline quality natural gas	13.68	lb/hr	1-H	0		_)	+
							(I) Two Siemens Model F5 (SF5) CTGs each rated at nominal capability of 225 megawatts (MW). Each CTG will have a duct fired HRSG with a maximum heat input of 688 million British thermal units per hour (MMBtu/hr).										
							(2) Two General Electric Model 7FA (GE7FA) CTGs each rated at nominal capability of 215 MW. Each CTG will have a duet fired HRSG with a maximum heat input of 523 MMBtu/hr.										
*TX-0714	S R BERTRON ELECTRIC GENERATING STATION	12/19/2014	(2) combined cycle 4 turbines Combined-cycle gas	natural gas	24	D MW	(3) Two Mitsubishi Heavy Industry G Frame (MHI501G) CTGs each rated at a nominal electric output of 263 MW. Each CTG will have a duct fired HRSG with a maximum heat input of 686 MMBtu/hr.		0.5	GR SULFUR/100 DSCF		0			(
*TX-0730	COLORADO BEND ENERGY CENTER	4/1/2015	turbine electric generating facility	natural gas	110	0 MW	combined cycle power plant that uses two combustion turbines and one steam turbine, model GE 7HA.02	efficient combustion, natural gas fuel	2	GR/100 SCF	1-HOUR	0.5	GR/100 SCF	ANNUAL			

$Table \ D-A-15$ $Sulfuric \ Acid \ (H_2SO_4) \ RBLC \ Search - Combustion \ Turbines \ Firing \ Natural \ Gas \ (With \ Duct \ Burning)$ $Invenergy, \ LLC - Allegheny \ County \ Energy \ Center \ Project$

		PERMIT ISSUANCE		PRIMARY				CONTROL METHOD	IEMISSION		LAVOTIME	EMISSION		AVG TIME	STANDARAD	1	AVG TIME
	l				THROUGHPUT			DESCRIPTION			AVG TIME CONDITION	LIMIT 2	UNIT				CONDITION
RBLCID	FACILITY NAME	DATE	PROCESS NAME		THROUGHPUT	THROUGHPUT UNIT	PROCESS NOTES	DESCRIPTION	LIMIT 1	UNIT	CONDITION	LIMIT 2	UNIT	CONDITION	EMISSION LIMIT	UNIT	CONDITION
1			Combined Cycle														
			Turbines (>25				Two power configuration options authorized										
	EAGLE MOUNTAIN STEAM		MW) – natural				Siemens â€" 231 MW + 500 million British thermal units per hour (MMBtu/hr) duct burner										
*TX-0751	ELECTRIC STATION	6/18/20		natural gas		210 MW	GE â€" 210 MW + 349.2 MMBtu/hr duct burner		15.56	lb/hr		13.6.	3 T/YR		0		
1			COMBINED														
			CYCLE TURBINE	E													
	WARREN COUNTY POWER		& DUCT				Emissions are for one of three units (Mitsubishi natural gas-fired combustion turbine (CT)				WITHOUT DUCT			WITH DUCT			
VA-0315	PLANT - DOMINION	12/17/20	10 BURNER, 3	Natural Gas		996 MMBTU/H	generator, Model M501 GAC).	Natural Gas burning.	0.0001	LB/MMBTU	BURNER FIRING	0.000	3 LB/MMBTU	BURNER FIRING	0		
			COMBUSTION														
	BRUNSWICK COUNTY		TURBINE				Three (3) Mitsubishi M501 GAC combustion turbine generators with HRSG duct burners				WITHOUT DUCT						
*VA-0321	POWER STATION	12/17/20	10 GENERATORS, (Natural Gas	3	442 MMBTU/H	(natural gas-fired).	Low sulfur fuel	0.0006	LB/MMBTU	BURNING		0		0		
			GE 7FA														
1			COMBUSTION														
			TURBINE & amp;														
			HEAT RECOVER				THREE IDENTICAL CT & HSRG UNITS. EACH CT WILL HAVE AN ANNUAL										
	BP CHERRY POINT		STEAM	NATURAL			AVERAGE CAPACITY RATING OF 1614 MMBTU/HR. EACH HRSG DUCT BURNER	LIMIT FUEL TYPE TO NATURAL									
WA-0328	COGENERATION PROJECT	1/11/20	05 GENERATOR	GAS		174 MW	WILL HAVE A MAXIMUM FIRING RATE OF 105 MMBTU/HR.	GAS	0				0		0		*SEE NOTES
1											1-hr average; Duct			1-hr average; Duct			
	Astoria Energy LLC		Combustion Turbin	ne Natural Gas	1	000 MW		Low Sulfur Fuels	0.001	lb/MMBtu	Burners On		7 lb/hr	Burners On			
1	Footprint Power Salem Harbor										1-hr average; Duct			1-hr average; Duct			
_	Development LP Footprint Power Salem Harbor		Combustion Turbin	ne Natural Gas		346 MW		Low Sulfur Fuels	2.3	lb/hr	Burners On		l lb/MMBtu	Burners On			
			<u>-</u>	I				l			1-hr average; Duct			1-hr average; Duct			
_	Development LP		Combustion Turbin	ne Natural Gas		346 MW		Low Sulfur Fuels	0.1	ppmvd @ 15% O	2 Burners On	0.00	8 lb/MW-hr	Burners On			
	Pioneer Valley		Combustion Turbin			387 MW			0.0010	lb/MMBtu							
	Pioneer Valley		Combustion Turbin	ne Naturai Gas		38/ MW			0.0019	Ib/MMBtu							
	1		<u>-</u>	I													
	Cricket Valley Energy Center		Combustion Turbin	ne Naturai Gas		000 MW			0.006	lb/MMBtu	1-hr average						
	Tenaska Partners LLC		Combustion Turbin		I .	147 MMBtu/hr			0.000574	lb/MMBtu			8 lb/hr				
-	UGI Development Co/ Hunlock		Compustion Turbin	ne inatural Gas	+	14 / MINIDUMI			0.000574	ioniviiviittii		13	9 10/III				
1	Creek	'		Natural Gas	1	71.2 MMBtu/hr			0.0000	lb/MMRtu							
$\overline{}$	CICCK		_	ivatural Gas	+	1.2 MINIBURIT		 	0.0009	IO IVIIVIID LU				+			
1	Hess Newark Energy Center		Combustion Turbin		1 .	266 MMBtu/hr			1.33	11. 4		0.0005	9 LB/MMBTU				
_	York Energy Center Block 1		Compustion Turbin	ne ivatural Gas		574 MMBtu/hr				lb/MMBtu	hourly basis	0.0005	A LD/MWBIO	+		1	
_	TOLK EINELEY CERTET BIOCK I				+ '	3/4 MMDtWiff		1	0.00046	IUIVIIVIIIIU	average of 3 test		1	+			1
1	York Energy Center Block 2	6/15/20	15		25	12.5 MMBtu/hr	firing NG with duct burner		0.00114	lb/MMBtu	rine						
	TOTAL LINEARY CHIRCH BROCK 2	0/13/20	***			and the same of th	ming ito min duct build	1	0.00114	io minista	average of 3 test						
1	York Energy Center Block 2	6/15/20	15		25	12.5 MMBtu/hr	firing NG without duct burner		0.00114	lb/MMBtu	rine						
	Calpine/Bethlehem Energy	0/13/20	**			and the same of th	ming its winner succession	1	0.00114	in in in in in in in in in in in in in i	Tun.			1			
1	Center					122 MW			0.00046	lb/MMBtu							

Table D-A-16 Sulfuric Acid (H₂SO₄) RBLC Search - Combustion Turbines Firing Natural Gas (Without Duct Burning) Invenergy, LLC - Allegheny County Energy Center Project

							invenergy, LLC - Allegneny County Energ								_		
RBLCID	FACILITY NAME	PERMIT ISSUANCE DATE	PROCESS NAME	PRIMARY FUEL	THROUGHPUT	THROUGHPUT UNIT	PROCESS NOTES	CONTROL METHOD DESCRIPTION	EMISSION LIMIT 1	UNIT	AVG TIME CONDITION	EMISSION LIMIT 2	UNIT	AVG TIME CONDITION	STANDARAD EMISSION LIMIT	UNIT	AVG TIME CONDITION
T-0161	KILLINGLY ENERGY CENTER	6/30/2017	Natural Gas w/o Duct Firing	Natural Gas	2969	MMBtu/hr	Throughput is for turbine only	Low Sulfur content fuel	0.0005	LB/MMBTU		(0		
			Combined-cycle				3-on-1 combined cycle unit. GE 7HA.02 turbines, approximately 350 MW per turbine. Total										
T-0356	OKEECHOBEE CLEAN ENERGY CENTER	3/9/2016	electric generating	Natural gas	3096	MMBtu/hr per turbine	unit generating capacity is approximately 1,600 MW. Primarily fueled with natural gas. Permitted to burn the base-load equivalent of 500 hr/yr per turbine on ULSD.	Use of low-sulfur fuels		GR. S/100 SCF GAS	FOR GAS	0.001	% S IN ULSD	FOR ULSD	0		
	DANIA BEACH ENERGY		2-on-1 combined														
FL-0363	CENTER	12/4/2017	Combined Cycle	Natural gas	4000	MMBtu/hr	Two nominal 430 MW combustion turbines, coupled to a steam turbine generator recovery steam generators (HRSG) identified as EUCTGHRSG1 & EUCTGHRSG2 in the	Clean fuels Good Combustion Practices and the use	(PROTOCOL	(0		+
MI-0423	INDECK NILES, LLC MIDDLESEX ENERGY	1/4/2017	CTGs with HRSGs)		8322	MMBTU/H	flexible group FGCTGHRSG. The total hours for startup and shutdown for each train shall not	of pipeline quality natural gas. USE OF NATURAL GAS A CLEAN	4.6	LB/H	WILL SPECIFY ONE H STACK	(0		
NJ-0085	CENTER, LLC	7/19/2016	Combustion Turbine firing Natural Gas	Natural Gas	8040	H/YR		BURNING FUEL	3.61	LB/H	TESTS EVERY 5	(0		
PA-0310	CPV FAIRVIEW ENERGY CENTER	9/2/2016	and HRSG without duct burner NG only	Natural oas			Emission limits are for each turbine fueled by NG and operating without duct burner being fired and do not include startup/shutdown emissions.	Low sulfur fuels and good combustion practices	0.0014	LB/MMBTU					0		
TX-0788	NECHES STATION	3/24/2016	Turbines > 25		222	MW	4 Simple cycle CTGs, 2,500 hr/yr operational limitation. Facility will consist of either 232 MW (Siemens) or 220 MW (GE)	good combustion practices, low sulfur		GR/100 SCF	HOURLY	0.24	GR/100 SCF	ANNUAL AVERAGE			
	NECHES STATION		Combined Cycle	natural gas	232	MW	2 CTGs to operate in simple cycle & combined cycle modes. 231 MW (Siemens) or 210 MW	GOOD COMBUSTION PRACTICES	<u> </u>					ANNUAL			+
ΓX-0788	NECHES STATION DECORDOVA STEAM	3/24/2016	& amp; Cogeneration Combined Cycle	natural gas	231	MW	(GE) Simple cycle operations limited to 2,500 hr/yr. 2 CTGs to operate in simple cycle & combined cycle modes. 231 MW (Siemens) or 210 MW	AND LOW SULFUR FUEL GOOD COMBUSTION PRACTICES	1	GR/100 SCF	HOURLY	0.25	GR/100 SCF	AVERAGE	0		
ΓX-0789	ELECTRIC STATION MONTGOMERY COUNTY	3/8/2016		natural gas NATURAL	231	MW	(GE). Simple cycle operations limited to 2,500 hr/yr.	AND LOW SULFUR FUEL		GR/100 SCF	HOURLY	1	GR/100 SCF	ANNUAL	0		
TX-0834	POWER STATIOIN	3/30/2018		GAS	2635	MMBTU/HR/UNIT	Two Mitsubishi M501GAC turbines (without fast start) Nominal 640 mWe	PIPELINE QUALITY NATURAL GAS		GR/100 DSCF		(0		
	HARRISON COUNTY						All emission limits steady-state and include 1000 mmBtu/hr Duct Burner in operation										
WV-0029	POWER PLANT	3/27/2018	GE 7HA.02 Turbine	Natural Gas	3496.2	mmBtu/hr	Short Term startup and shutdown limits in lb/event given in permit. 500 MMBTU/hr Gas Turbine (Model: GE LM6000) rated at 52 MW and 155 MMBTU/hr	Use of Natural Gas	3.8	LB/HR		16.7	TONS/YEAR		0.0009	LB/MMBTU	+
DE-0023	NRG ENERGY CENTER DOVER	10/31/2012	UNIT 2- KD1	Natural Gas	444	MMBTU/H	Heat Recovery Steam Generator rated at 18 MW. The unit is required to operate a certified CEMS and COMS.		0.12	llb/hr	1 HOUR AVERAGE	,					
DE 0025	GARRISON ENERGY	10/31/2012	0.412-101	Tutuu Cus	033	initio in	Claris and Costs.		0.13	10.11	12 MONTH ROLLING	,					
DE-0024	CENTER CENTER	1/30/2013	Unit 1 300 MW	Natural Gas	2260	million BTUs			24.3	TONS	AVERAGE	(0		
			COMBINED														
	CANE ISLAND POWER		CYCLE COMBUSTION	NATURAL						GR S/100 SCF							
L-0304	PARK	9/8/2008	TURBINE	GAS	1860	MMBTU/H		FUEL SPECIFICATIONS		GAS		(0		+
'IA-0107	MARSHALLTOWN GENERATING STATION	4/14/2014	Combustion turbine #1 - combined cycle		2250	mmBtu/hr	two identical Siemens SGT6-5000F combined cycle turbines without duct firing, each at 2258 mmBtu/hr generating approx. 300 MW each.		0.0022	LB/MMBTU	3 ONE-HOUR TEST RUNS	21.2	TON/YR	12-MONTH ROLLING			
IA-0107		4/14/2014		naturai gas	2238	mmoturir	ministurir generating approx. 300 M w each.		0.0032	LB/MMB1U	AVERAGE OF 3	31.2	TONTR	12-MONTH			+
IA-0107	MARSHALLTOWN GENERATING STATION	4/14/2014	Combustion turbine #2 -combined cycle	natural gas	2258	mmBtu/hr			0.0032	LB/MMBTU	ONE-HOUR TEST RUNS	31.3	TON/YR	ROLLING TOTAL	0		
			GAS TURBINES -					USE OF LOW SULFUR NATURAL			*SEE NOTES. HOURLY			ANNUAL			
.A-0192	CRESCENT CITY POWER	6/6/2005	187 MW (2) 2 COMBINED		2006	MMBTU/H		GAS, 1.8 GRAINS PER 100 SCF	8.5	lb/hr	MAXIMUM	37.2	T/YR	MAXIMUM	0		
			CYCLE														
			TURBINES,														
MD-0042	WILDCAT POINT GENERATION FACILITY	4/8/2014	WITHOUT DUCT FIRING	NATURAL GAS	270	MW		EXCLUSIVE USE OF PIPELINE QUALITY NATURAL GAS	9.1	lb/hr	3-HOUR BLOCK AVERAGE	(0		
			Turbines (4) (model				Four GE 7FA combined cycle turbines, dry low NOx burners and selective catalytic reduction. These limits are for each of the 4 turbines individually, while operating with the duct burners	Burning natural gas in an efficient									
OH-0356	DUKE ENERGY HANGING ROCK ENERGY	12/18/2012	GE 7FA) Duct Burners Off	NATURAL	177	MW	off. This permit is a modification to RBLC OH-0252 to remove hourly restrictions on duct burners.	combustion turbine and using low sulfur	0.15	lb/hr		1.01	T/YR	PER ROLLING MONTHS	12		
PA-0296	BERKS HOLLOW ENERGY ASSOC LLC/ONTELAUNEE		Turbine, Combined Cycle, #1 and #2	Natural Gas		MMBtu/hr	Equipped with SCR and Oxidation Catalyst	inci.		T/YR			lb/hr	MONTHS			
TA-0290	CITY PUBLIC SERVICE JK	12/1//2013	SPRUCE POWER	Naturai Gas	3046	MINIDIUM	Equipped with SCR and Oxidation Catalyst		2.9	1/1K		0.6.	ioni		-		
ΓX-0516	SPRUCE ELECTRICE GENERATING UNIT 2	12/28/2005	GENERATOR UNIT NO 2						44	lb/hr		125	T/YR		0		
							(2) GE7FA at 195 MW each, (1) steam turbine at 200 MW.										
TX-0600	THOMAS C. FERGUSON POWER PLANT	9/1/2011	Natural gas-fired turbines	natural gas	390	MW	Each turbine is equipped with an unfired heat recovery steam generator (HRSG), which provides steam for the steam turbine.	pipeline quality natural gas	13.68	lb/hr	1-H				0		
	COLORADO BEND ENERGY		Combined-cycle gas turbine electric				combined cycle power plant that uses two combustion turbines and one steam turbine, model										
TX-0730	CENTER	4/1/2015	generating facility COMBUSTION	natural gas	1100	MW	GE 7HA.02	efficient combustion, natural gas fuel	1	GR/100 SCF	1-HOUR	0.5	GR/100 SCF	ANNUAL	0		
	BRUNSWICK COUNTY		TURBINE	L		L	Three (3) Mitsubishi M501 GAC combustion turbine generators with HRSG duct burners	<u> </u>			WITHOUT DUCT						
VA-0321	POWER STATION	3/12/2013	GENERATORS, (3)			MMBTU/H	(natural gas-fired).	Low sulfur fuel		LB/MMBTU	BURNING 1-hr average; Duct	(1	1-hr average; Du	et 0		+
	Astoria Energy LLC Footprint Power Salem Harbor		Combustion Turbine			MW		Low Sulfur Fuels		lb/MMBtu	Burners Off 1-hr average; Duct		lb/hr	Burners Off 1-hr average; Du	et .		+
	Development LP Footprint Power Salem Harbor		Combustion Turbine	Natural Gas	346	MW		Low Sulfur Fuels	2.2	lb/hr	Burners Off 1-hr average: Duct		lb/MMBtu	Burners Off 1-hr average: Du	1		+
	Development LP		Combustion Turbine	Natural Gas	346	MW	Four GE 7FA combined cycle turbines, dry low NOx burners and selective catalytic reduction.	Low Sulfur Fuels	0.1	ppmvd @ 15% O2	Burners Off	0.007	lb/MW-hr	Burners Off			
							These limits are for each of the 4 turbines individually, while operating with the duct burners on. This permit is a modification to RBLC OH-0252 to remove hourly restrictions on duct										
	Pioneer Valley		Combustion Turbine	Natural Gas	387	MW	 This permit is a modification to RBLC OH-0252 to remove hourly restrictions on duct burners. 		0.0019	lb/MMBtu							
	Cricket Valley Energy Center		Combustion Turbine	Natural Gas	1000	MW			0.006	lb/MMBtu	1-hr average						
	Tenaska Partners LLC		Combustion Turbine	Natural Gas	3147	MMBtu/hr			0.000574	lb/MMBtu		1.5	lb/hr				
	UGI Development Co/ Hunlock Creek			Natural Gas		MMBtu/hr				lb/MMBtu							1
	Hess Newark Energy Center York Energy Center Block 1		Combustion Turbine	Natural Gas	2320 1574	MMBtu/hr MMBtu/hr				lb/hr lb/MMBtu	hourly basis						
	Calpine/Bethlehem Energy Center				122	MW			0.00046	lb/MMBtu							
		•								•	•				·	•	

	I		I			I			1			1			ISTANDARAD	1	1
RBLCID	FACILITY NAME	PERMIT ISSUANCE DATE	PROCESS NAME	PRIMARY	THROUGHPUT	THROUGHPUT UNIT	PROCESS NOTES	CONTROL METHOD DESCRIPTION	EMISSION LIMIT 1	UNIT	AVG TIME CONDITION	EMISSIO N LIMIT 2	UNIT	AVG TIME CONDITION	EMISSION LIMIT	UNIT	AVG TIME CONDITION
	ST. CHARLES POWER		SCPS Combined					Thermally efficient combustion turbines and good combustion									
LA-0313	STATION	8/31/2016	Cycle Unit 1A	Natural Gas	3625	MMBTU/hr		practices Thermally efficient combustion	0			0			0		
	ST. CHARLES POWER		SCPS Combined					turbines and good combustion									
LA-0313	STATION	8/31/2016	Cycle Unit 1B	Natural Gas	3625	MMBTU/hr		practices	- 0			- 0			0		
							There are 2 combined cycle natural gas-fired combustion turbine generators (CTGs) with heat recovery steam generators (HRSG) identified as EUCTGHRSG1 & EUCTGHRSG2 in the flexible group FGCTGHRSG. The total hours for startup and shutdown for each train shall no exceed 500 hours per 12-month rolling time period.	t									
			FGCTGHRSG (2				The throughput capacity is 3421 MMBTU/H for each turbine, and 740 MMBTU/H for each	Energy efficiency measures and the									
MI-0423	INDECK NILES, LLC	1/4/2017	Combined Cycle CTGs with HRSGs)	Natural oas	8322	MMBTU/H	duct burner for a combined throughput of 4161 MMBTU/H or 8322 MMBTU/H for both trains	use of a low carbon fuel (pipeline quality natural gas).	2097001	T/YR	12-MONTH ROLLING TIME PERIOD	3			0		
			FG-TURB/DB1-3 (3 combined cycle														
			combustion turbine and heat recovery				Three (3) combined-cycle combustion turbine (CT) / heat recovery steam generator (HRSG) trains. Each CT is a natural gas fired Mitsubishi model 501G, equipped with dry low NOx										
	NEW COVERT		steam generator				combustor and inlet air evaporative cooling. Each HRSG includes a natural gas fired duct	Several energy efficiency measures			EACH CT/HRSG TRAIN; 12	-		EACH CT/HRSG TRAIN; 12			
*MI-0432	GENERATING FACILITY	7/30/2018		Natural gas	1230	MW	burner with a 256 MMBtu/hr heat input capacity and a dry low NOx burner.	and the use of natural gas.	1425081	T/YR	MO. ROLL TIME PER	7978	BTU/KW-H	MO ROLL AVG	0		
			EUCTGHRSG (South Plant): A combined cycle natural gas-fired				A combined-cycle natural gas-fired combustion turbine generator (CTG) with heat recovery steam generator (HRSG) in a 1x1 configuration with a steam turbine generator (STG) for a nominal 500 MW electricity production. The CTG is a H-class turbine with a rating of 3,080										
			combustion turbine generator with heat				MMBTU/H (HHV). The HRSG is equipped with a natural gas-fired duct burner rated at 755 MMBTU/H (HHV) at ISO conditions to provide heat for additional steam production. The	Energy efficiency measures and the									
*MI-0433	MEC NORTH, LLC AND MEC SOUTH LLC	6/29/2018	recovery steam	Natural gas	500	MW	HRSG is not capable of operating independently from the CTG. The CTG/HRSG is equipped with dry low NOx burner (DLNB), SCR and an oxidation catalyst.	use of a low carbon fuel (pipeline quality natural gas).	1978297	TAVE	12-MO ROLLING TIME PERIOD	904	LB/MW-H	12-OPERATING MONTH ROLL AVG BASIS			
WII-0433	MEC SOUTH LEC	6/29/2018	generator.	i vaturai gas	500	INI W	with dry low NOx burner (DLNB), SCR and an oxidation catalyst. Nominal 500 MW electricity production. Turbine rating of 3,080 MMBTU/hr (HHV) and	quanty natural gas).	19/8297	1/1K	LEGOD	806	LD/WW-H	ROLL AVO BASIS	0		
			EUCTGHRSG (North Plant): A				Nominal 300 MW electricity production. Turbine rating of 3,080 MMBTU/hr (HHV) and HRSG duct burner rating of 755 MMBTU/hr (HHV). A combined-cycle natural gas-fired combustion turbine generator (CTG) with heat recovery										
			combined-cycle natural gas-fired combustion turbine				steam generator (HRSG) in a 1x1 configuration with a steam turbine generator (STG) for a nominal 500 MW electricity production. The CTG is a H-class turbine with a rating of 3,080 MMRTU/hr (HHV). The HRSG is equipped with a natural case-fixed duct burner rated at 755										
	MEC NORTH, LLC AND		generator with heat recovery steam				MMBTU/hr (HHV) at ISO conditions to provide heat for additional steam production. The HRSG is not canable of operating independently from the CTG. The CTG/HRSG is equipped	Energy efficiency measures and the use of a low carbon fuel (nineline			12-MO ROLL TIME			12- OPERATING MONTH			
*MI-0433	MEC SOUTH LLC	6/29/2018		Natural gas	500	MW	with dry low NOx burner (DLNB), SCR, and an oxidation catalyst. Two (2) combined-cycle natural gas-fired combustion turbine generators, each with a heat	quality natural gas).	1978297	T/YR	PERIOD PERIOD	806	LB/MWH	ROLL AVG	0		
			FGCTGHRSG				recovery steam generator (CTGHRSG). Plant nominal 1.150 MW electricity production. Turbines are each rated at 3.658										
	BELLE RIVER COMBINED		(EUCTGHRSG1 &				MMBTU/H and HRSG duct burners are each rated at 800 MMBTU/H.				12-MO ROLLING TIME			12-OPER MO ROLL AVG;			
°MI-0435	CYCLE POWER PLANT	7/16/2018	EUCTGHRSG2) Combined Cycle	Natural gas	0		The HRSGs are not capable of operating independently from the CTGs.	Energy efficiency measures	2042773	T/YR	PERIOD; EACH UNIT	794	LB/MW-H	EACH UNIT	0		
			Combustion Turbine firing														
	MIDDLESEX ENERGY		Natural Gas with					USE OS NATURAL GAS A			BASED ON CONSECUTIVE						
NJ-0085	CENTER, LLC TENASKA PA	7/19/2016	Duct Burner	natural gas	4000	h/yr		CLEAN BURNING FUEL	888	LB/MW-H	12 MONTH ROLLING	0			0		
*PA-0306	PARTNERS/WESTMORELA ND GEN FAC	2/12/2016	Large combustion turbine	Natural Gas			This process entry is for operations with the duct burner. Limits entered are for each turbine. Emission limits are for each turbine operating with duct burner and do not include	Good combustion practices	1881905	TPY					0		
171 0300	THE GENT THE	2122010	- Caronic	- Auturu Ous			startun/shutdown emissions. Tons, nor year limits is a cumulative value for all three CCCT	Good combasion practices	1001505						Ĭ		
							CEMS for NOx, CO, and O2. Fach CCCT and duct humer have 5 operational scenarios:										
							1 CCCT with duct burner fired - fueled by NG only										
			Combustion turbine and HRSG with	1			2 CCCT with duct burner fired - fueled by NG blend with ethane 3 CCCT without duct burner fired - fueled by NG only										
*PA-0310	CPV FAIRVIEW ENERGY CENTER	9/2/2016	duct burner NG only	Natural Gas	3338	MMBtu/hr	4 CCCT without duct burner fired - fueled by NG blend with ethane 5 CCCT without duct burner fired - fueled by ULSD (Limited to emergency use only)	low sulfur fuel and good combustion practices	3352086	TONS	12-MONTH ROLLING BASIS	0			0		
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Natural Gas-Fired Combustion		3330		Turbine throughput is 1019 7 MMRtu/hr when huming natural gas and 1083 7 MMRtu/hr										
TNI OLGO	JOHNSONVILLE	4707	Turbine with	Natural Gas		MMRtu/hr	turbine throughput is 1019.7 mm/blum when burning natural gas and 1063.7 mm/blum when burning No. 2 oil. Duct burner throughput is 319.3 MMBtu/hr. Duct burner firing will occur during natural gas combustion only.	Good combustion design and	10	I.B/MWH	12-MONTH MOVING				_		
TN-0162	COGENERATION	4/19/2016	Combined Cycle	inaturai Gas	1339	MMBtwhr	occur during natural gas combustion only.	practices	1800	LB/MWH	AVERAGE	- 0			0		
			& Cogeneration (>														
TX-0791	ROCKWOOD ENERGY CENTER	3/18/2016	25 megawatts (MW))	natural gas	889	MW	(2) GE 7HA.01 in a 2x1 configuration and a 872 million British thermal units per hour (MMBtu/hr) duct burner	Good combustion practices	901	LB/MWH		0			0		
			Combined Cycle & Combined Cycle														
TX-0791	ROCKWOOD ENERGY CENTER	2/18/2016	Cogeneration (>	natural gas	1127	MW	(2) CE 7HA 02 in a 2v1 configuration and a 995 MMProfest dust huma-	Good combustion practices	0/5	I.B/MWH							
1.A-0/91	CENTER	3/18/2016	Combined Cycle	naturai gas	1127	INI W	(2) GE 7HA.02 in a 2x1 configuration and a 985 MMBtu/hr duct burner	Good compusion practices	863	LD/MWII		- 0			0		
	ROCKWOOD ENERGY		& Cogeneration (>														
TX-0791	CENTER	3/18/2016	25 MW) Combined Cycle	natural gas	748	MW	(2) GE 7FA.05 in a 2x1 configuration and a 826 MMBtu/hr duct burner	Good combustion practices	944	LB/MWH		0		+	0		
	ROCKWOOD ENERGY		& Cogeneration (>														
TX-0791	CENTER	3/18/2016	25 MW) Combined Cycle	natural gas	889	MW	(2) MHI 501GAC in a 2x1 configuration and a 221 MMBtu/hr duct burner	good combustion practices	929	LB/MWH		0		1	0		
			&														
TX-0791	ROCKWOOD ENERGY CENTER	3/18/2016		natural gas	889	MW	(2) MHI 501GAC in (2) 1x1 configurations and a 221 MMBtu/hr duct burner	good combustion practices	929	LB/MWH		0			0		
			Combined Cycle & Comp;														
TX-0791	ROCKWOOD ENERGY CENTER	3/18/2016	Cogeneration (> 25 MW)	natural gas	015	MW	(2) Siemens SCC6-8000H(1.4) in a 2x1 configuration and a 326 MMBtu/hr duct burner	good combustion practices	965	LB/MWH					0		
2,750,71		3/16/2016	Combined Cycle Turbine with Heat	даз	913		2.50 visitions and the companion and a 520 visitions and the companion of	padences	763			1			0		
			Recovery Steam														
			Generator, fired Duct Burners, and														
TX-0819	GAINES COUNTY POWER PLANT	4/28/2017	Steam Turbine Generator	NATURAL GAS	426	MW	Four Siemens SGT6-5000F5 natural gas fired combustion turbines with HRSGs and Steam Turbine Generators	Pipeline quality natural gas	960	LB / MW H		0			0		
	•		•	-							•					•	

		PERMIT ISSUANCE		PRIMARY				CONTROL METHOD	EMISSION			EMISSIO			STANDARAD EMISSION		AVG TIME
RBLCID	FACILITY NAME	DATE	PROCESS NAME	FUEL	THROUGHPUT	THROUGHPUT UNIT	PROCESS NOTES	DESCRIPTION	LIMIT 1	UNIT	AVG TIME CONDITION	N LIMIT 2	UNIT	AVG TIME CONDITION	LIMIT	UNIT	CONDITION
	HARRISON COUNTY		GE 7HA.02				Nominal 640 mWe All emission limits steady-state and include 1000 mmBtu/hr Duct Burner in operation										
*WV-0029	POWER PLANT	3/27/2018	Turbine	Natural Gas	3496.2	mmBtu/hr	Short Term startup and shutdown limits in lb/event given in permit. 500 MMBTU/hr Gas Turbine (Model: GE LM6000) rated at 52 MW and 155 MMBTU/hr	Use of Natural Gas, Model GE7HA	528543	LB/HR		2315020	TONS/YEAR		826	LB/MW-HR	
anr	NRG ENERGY CENTER	10.01.001	UNIT 2- KD1			MMBTU/H	Heat Recovery Steam Generator rated at 18 MW. The unit is required to operate a certified		1005	LB/GROSS MWH	12 MONTH ROLLING						
*DE-0023	DOVER GARRISON ENERGY	10/31/2012	UNIT 2- KD1	Natural Gas			CEMS and COMS.	Fuel Usage Restriction to natural gas	1085		AVERAGE 12 MONTH ROLLING	0			0		
DE-0024	CENTER	1/30/2013	Unit 1	Natural Gas	2260	million BTUs		and low sulfur distillate fuel	1.01E+06	T/YR	AVERAGE	0			0		
*IA-0107	MARSHALLTOWN GENERATING STATION	4/14/2014	Combustion turbine #2 -combined cycle	natural gas	2258	mmBtu/hr			1.32E+06	T/YR	12-MONTH ROLLING TOTAL	0			0		
			FOUR (4)				EACH TURBINE IS EQUIPED WITH DRY LOW NOX BURNERS, NATURAL GAS FIRED DUCT BURNERS, AND A HEAT RECOVERY STEAM GENERATOR										
			NATURAL GAS COMBINED				IDENTIFIED AS HRSG#. NOX EMISSIONS CONTROLLED BY SELECTIVE CATALYTIC REDUCTION SYSTEMS (SCR##) ALONG WITH CO AND VOC										
			CYCLE				EMISSSIONS CONTROLLED BY OXIDATION CATAYLST SYSTEMS (CAT##) IN										
*IN-0158	ST. JOSEPH ENEGRY CENTER, LLC	12/3/2012	COMBUSTION TURBINES	NATURAL GAS	2300	MMBTU/H	EACH TURBINE. EACH STACK HAS CONTINUOUS EMISSIONS MONITORS FOR NOX AND CO. COMBINED NOMIAL POWER OUTPUT IS 1.350 MW.	HIGH THERMAL EFFICIENCY DESIGN	7646	BTU/KW-H		4.89E+06	TONS	12 CONSECUTIVE MONTH PERIOD	0		
			COGENERATION TRAINS 1-3 (1-10,				EACH COGEN TRAIN CONSISTS OF A 50 MW GE LM6000 PF SPRINT TURBINE AND A HEAT RECOVERY STEAM GENERATOR EQUIPPED WITH A 70 MM BTU/HR	USE OF NATURAL GAS AS FUEL AND GOOD COMBUSTION									
LA-0256	COGENERATION PLANT	12/6/2011	2-10, 3-10) Combined Cycle	NATURAL GAS	475	MMBTU/H	DUCT BURNER.	PRACTICES	55576.77	LB/H	HOURLY MAXIMUM	0			0		
	CARRIE BACCALVO		Refrigeration					Good combustion/operating practices									
LA-0257	SABINE PASS LNG TERMINAL	12/6/2011	Compressor Turbines (8)	natural gas	286	MMBTU/H	GE LM2500+G4	and fueled by natural gas - use GE LM2500+G4 turbines	4.87E+06	T/YR	ANNUAL MAXIMUM FROM THE FACILITYWIDE	0			0		
			2 COMBINED-				TWO GENERAL ELECTRIC (GE) F-CLASS ADVANCED COMBINED CYCLE COMBUSTION TURBINES (CTS) WITH A NOMINAL GENERATING CAPACITY OF										
			CYCLE COMBUSTION				725 MW, COUPLED WITH A HEAT RECOVERY STEAM GENERATOR (HRSG) EQUIPPED WITH DUCT BURNERS, DRY LOW-NOX BURNERS, SCR, OXIDATION										
*MD-0041	CPV ST. CHARLES	4/23/2014	TURBINES	NATURAL GAS	725	MEGAWATT	CATALYST	CO2 CEMS EXCLUSIVE USE OF PIPELINE-	7605	BTU/KW-H	@ ISO CONDITIONS	57.4	% EFFICIENCY	@ ISO CONDITIONS	0		
			a compare				The Manual Control of the Control of	QUALITY NATURAL GAS, AND INSTALLATION OF HIGH-									
			2 COMBINED CYCLE				TWO MITSUBISHI ''G'Model COMBUSTION TURBINE GENERATORS (CTS) WITH A NOMINAL GENERATING CAPACITY OF 270 MW	EFFICIENCY CT MODEL									
	WILDCAT POINT		COMBUSTION TURBINES, WITH				CAPACITY EACH, COUPLED WITH A HEAT RECOVERY STEAM GENERATOR (HRSG) EQUIPPED WITH DUCT BURNERS, DRY LOW-NOX COMBUSTORS,	(MITSUBISHI ''''					BTU/KWH	AT ALL TIMES,			
*MD-0042	GENERATION FACILITY	4/8/2014	DUCT FIRING	NATURAL GAS	1000	MW	SELECTIVE CATALYTIC REDUCTION (SCR), OXIDATION CATALYST This is a combined-evele combustion turbine with a non-fired heat recovery steam generator	MODEL)	946	LB/MW-H	12-MONTH ROLLING	7500	(HEAT RATE)	EXCLUDING SU/SD	0		
			Combined cycle				(HRSG).				12-MONTH ROLLING						
*MI-0402	SUMPTER POWER PLANT	11/17/2011	combustion turbine w/ HRSG	Natural gas	130	MW electrical output	Natural gas-fired combustion turbine conversion to combined-cycle. Throughput is 2,237 MMBTU/H for each CTG		954	LB/MW-H	12-MONTH ROLLING AVERAGE	0			0		
			Natural gas fueled combined cycle				Equipment is permitted as following flexible group (FG): FG-CTG1-2: Two natural gas fired CTGs with each turbine containing a heat recovery steam										
	MIDLAND COGENERATION		combustion turbine generators (CTG)				generator (HRSG) to operate in combined cycle. The two CTGs (with HRSG) are connected to one steam turbine generator. Each CTG is equpped with a dry low NOx (DLN) burner and	Good combustion practices and			12-MO. ROLLING						
°MI-0405	VENTURE VENTURE	4/23/2013	with HRSG	Natural gas	2237	MMBTU/H	a selective catalytic reduction (SCR) system.	energy efficiency.	995	LB/MW-H	AVERAGE	0			0		
							This process is permitted in a flexible group format, identified in the permit as FG-CTG/DB1-										
			Natural gas fueled				2 and is for two natural gas fired CTGs with each turbine containing a heat recovery steam generator (HRSG) to operate in combined cycle. The two CTGs (with HRSG) are connected										
			combined cycle combustion turbine				to one steam turbine generator. Each CTG is equipped with a dry low NOx (DLN) burner and a selective catalytic reduction (SCR) system. Additionally, the HRSG is operating with a										
	MIDLAND COGENERATION		generators (CTG) with HRSG and				natural gas fired duct burner for supplemental firing.	Good combustion practices and									
*MI-0405	VENTURE	4/23/2013	duct burner (DB)	Natural gas	2486	MMBTU/H	The throughput is 2,486 MMBTU/H for each CTG/DB. Natural gas fired CTG with DB for HRNG: 4 total.	energy efficiency	1071	LB/MW-H	12-MONTH ROLLING AVG	0			0		
							,										
							Technology A (4 total) is 2587 MMBTU/H design heat input each CTG.										
							Technology B (4 total) is 2688 MMBTU/H design heat input each CTG.										
			FGCCA or FGCCB				Permit was issued for either of two F Class turbine technologies with slight variations in emission rates. Applicant will select one technology. Installation is two separate CTG/HRSG										
	THETFORD GENERATING		-4 nat. gas fired]			trains driving one steam turbine electrical generator; Two 2XI Blocks. Each CTG will be rated at 211 to 230 MW (gross) output and the station nominal generating capacity will be up				12-MO ROLL TIME PERIOD DETER EACH						
*MI-0410	STATION GENERATING	7/25/2013	CTG w/ DB for HRSG	natural gas	2587	MMBTU/H heat input, each CTG	rated at 211 to 230 MW (gross) output and the station nominal generating capacity will be up to 1,400 MW.		1.39E+06	T/YR	MONTH EACH	0			0		
							This process is identified in the permit as FGCTGHRSG; it is 2 combined cycle natural gas-										
			FG-CTGHRSG: 2				fired combustion turbine generators (CTGs) with Heat Recovery Steam Generators (HRSGs) equipped with duct burners for supplemental firing (EUCTGHRSG1 & EUCTGHRSG2 in										
	HOLLAND BOARD OF PUBLIC WORKS - EAST 5TH		Combined cycle CTGs with HRSGs			MMBTU/H for each	FGCTGHRSG). The total hours for both units combined for startup and shutdown shall not exceed 635 hours per 12-month rolling time period. Each CTGHRSG shall not exceed 647	Energy efficiency measures and the use of a low carbon fuel (pipeline			12-MO ROLL TIME						
*MI-0412	STREET	12/4/2013	with duct burners	natural gas	647	CTGHRSG	MMBtu/hr on a fuel heat input basis. This is a 427 MW Siemens Combined Cycle Turbine with duct burner	quality natural gas).	3.39E+05	T/YR	PERIOD PERIOD	0			0		
			Combined Cycle				Heat Input rate of the turbine = 2276 MMbtu/hr (HHV)										
	WEST DEPTFORD ENERGY	-	Combustion Turbine with Duct				Heat Input rate of the Duct burner= 777 MMbtu/hr(HHV)	Turbine efficiency and Use of			CONSECUTIVE 12 MONTH			CONSECUTIVE 12 MONTH			
*NJ-0082	STATION	7/18/2014	Burner	Natural Gas	20282	MMCF/YR	The fuel use of 20,282 MMCF/YR is for three turbines and three Duct burners. Two Siemens 2932 MMBtu/H combined cycle combustion turbines, both with 300 MMBtu/E	Natural gas a clean burning fuel	1.24E+06	T/YR	(ROLLING 1 MONTH)	947	LB/MW-H	(ROLLING 1 MONTH)	0		
			2 Combined Cycle Combustion				duct burners, with dry low NOx combustors, SCR, and catalytic oxidizer. Will install either 2 Siemens or 2 Mitsubishi, not both (not determined).										
	OREGON CLEAN ENERGY		Turbines-Siemens,			Lancor v	Short term limits are different with and without duct burners.	state-of-the-art high efficiency		l na				DED DOLLDIS			ann 11
*OH-0352	CENTER	6/18/2013	with duct burners 2 Combined Cycle	Natural Gas	51560	MMSCF/rolling 12-MO	Two Mitsubishi 2932 MMBtu/H combined cycle combustion turbines, both with 300	combustion technology	318404	LB/H		1.44E+06	1/YR	PER ROLLING 12-MONTHS	0		SEE NOTES
			Combustion Turbines-				MMBtu/H duct burners, with dry low NOx combustors, SCR, and catalytic oxidizer. Will install either 2 Siemens or 2Mitsubishi, not both (not determined).										
*OH-0352	OREGON CLEAN ENERGY CENTER	6/18/2013	Mitsubishi, with duct burners	Natural Gas	47017	MMSCF/rolling 12-MO	Short term limits are different with and without duct burners. This process with duct burners.	state-of-the-art high efficiency combustion technology	318404	I.B/H		1.39E+06	T/YR	PER ROLLING 12-MONTHS			SEE NOTES
		0.10/2013	Mitsuhishi M501-		4/51/	Tolling 12-WO	VMINA.	E CONTROL OF THE PARTY OF THE P	310404			1.552.100		I I I I I I I I I I I I I I I I I I I			
			GAC combustion				Four GE 7FA combined cycle turbines, dry low NOx burners and selective catalytic reduction These limits are for each of the 4 turbines individually, while operating with the duct burners										
	TROUTDALE ENERGY		turbine, combined cycle configuration				These limits are for each of the 4 turbines individually, while operating with the duct burners on. This permit is a modification to RBLC OH-0252 to remove hourly restrictions on duct	Thermal efficiency			365-DAY ROLLING						
*OR-0050	CENTER, LLC	3/5/2014	with duct burner.	natural gs	2988	MMBtu/hr	burners. Two combine cycle Turbines, each with a combustion turbine and heat recovery steam	Clean fuels	1000	LB/GROSS MWH	AVERAGE	0			0		
ı			Combined-cycle				generator with duct burner. Each combined-cycle process will be rated at 468 MW or less. The heat input rating of each combustion gas turbine is 2890 MMBtu/hr (HHV) or less, and										
DA 0270	MOXIE LIBERTY	1000	Turbines (2) -	Notes C		MARTINI	the heat input rating of each supplemental duct burner is equal to 387 MMBtu/hr (HHV) or	Cool contention	1.400	TAVD	468 MW BOWERPY OCT	1.200.00	TAVE	ASA MAN DONUMBRY CO.			
PA-0278	LLC/ASYLUM POWER PL T	10/10/2012	Natural gas fired	Natural Gas	3277	MMBTU/H	Jess.	Good combustion practices.	1.48E+06	11/YR	468 MW POWERBLOCK	1.39E+06	1/YR	454 MW POWERBLOCK	0		

															STANDARAD		
RBLCID	FACILITY NAME	PERMIT ISSUANCE DATE	PROCESS NAME	PRIMARY FUEL	THROUGHPUT	THROUGHPUT UNIT	PROCESS NOTES	CONTROL METHOD DESCRIPTION	EMISSION LIMIT 1	UNIT	AVG TIME CONDITION	EMISSIO N LIMIT 2	UNIT	AVG TIME CONDITION	EMISSION LIMIT	UNIT	AVG TIME CONDITION
			Combined Cycle														
			Combustion Turbine AND				Three powerblocks consisting of three (3) natural gas fired F class combustion turbines										
*PA-0288	SUNBURY GENERATION LP/SUNBURY SES	4/1/2013	DUCT BURNER	Natural Gas	2528000	MMBTU/H	coupled with three (3) heat recovery steam generators (HSRGs) equipped with natural gas fired duct burners.		281727	I DAI	WHEN DUCT BURNERS OPERATING	298106	I D 41	WHEN DUCT BURNERS OPERATING			
*FA-0288	LP/SUNDUKT SES	4/1/2013	(3)	Naturai Gas	2338000	MMB1U/H	The Permittee shall select and install any of the turbine options listed below (or newer version	is	281/2/	LD/II	OPERATING	298100	LB/II	OPERATING	0		
							of these turbines if the Department determines that such newer versions achieve equivalent or better emissions rates										
							and exhaust parameters)										
							General Electric 7FA (GE 7FA) Siemens SGT6-5000F (Siemens F)										
			COMBINED				3. Mitsubishi M501G (Mitsubishi G)										
*PA-0291	HICKORY RUN ENERGY STATION	4/23/2013	CYCLE UNITS #1 and #2	Natural Gas	3.4	MMCF/HR	Siemens SGT6-8000H (Siemens H) The emissions listed are for the Siemens SGT6-8000H unit.		3.67E+06	T/YR	12-MONTH ROLLING TOTAL FOR BOTH UNITS		,		0		
	BERKS HOLLOW ENERGY																
*PA-0296	ASSOC LLC/ONTELAUNEE	12/17/2013	Turbine, Combined Cycle, #1 and #2	Natural Gas	3046	MMBtu/hr	Equipped with SCR and Oxidation Catalyst		1.38E+06	T/YR		(0		
			COMBINED CYCLE TURBINE				Natural gas-fired GE 7FA combustion turbine unit, U1-STK. and is rated at Max. based-load										
	THOMAS C. FERGUSON		GENERATOR U1-	-			output of 195 MW and vented to a Heat Recovery Steam Generator(HRSG) that is equipped				30-DAY ROLLING			STARTUP AND			
TX-0612	POWER PLANT	11/10/201	STK	Natural Gas	1746	MMBTU/H	with a SCR and an Oxidation Catalyst(OC).	Good Combustion Practices	908957.6	LB/H	AVERAGE	153392.1	LB/H	SHUTDOWN (ONLY)	0		
								install efficient turbines, follow the turbine manufacturer's emission-									
								related written instructions for									
								maintenance activities including prescribed maintenance intervals to									
								assure good combustion and efficient									
			Refrigeration					operation. Compressors shall be inspected and maintained according									
ATT 0 (70	CORPUS CHRISTI	2/27/2015	Compressor	l.,	40000		There are three LNG trains. In total there are (6) GE LM2500+ DLE turbines driving the	to a written maintenance plan to	1.485.00		12-MONTH ROLLING						
*TX-0679	LIQUEFACTION PLANT	2/27/2013	Turbine Combustion	natural gas	40000	hp	compressors in the ethylene refrigeration sections.	maintain efficiency.	1.47E+05	T/YR	BASIS	-)		0		+
	AUSTIN ENERGY, SAND		Turbine with HRSG, Duct				GE 7FA.04				365-DAY ROLLING						
*TX-0743	HILL ENERGY CENTER	9/29/2014	Burners, and SCR	Natural Gas	7943	Btu/kWh (HHV, gross)	Gross Heat Rate is with and without duct burner firing and includes MSS. The plant will consist of four identical Alstom GT24 natural gas-fired CTGs. The CTGs will		930	LB/MW-H	AVERAGE	1.46E+06	TPY CO2E	365-DAY ROLLING TOTAL	0		
							The plant will consist of four identical Alstom GT24 natural gas-fired CTGs. The CTGs will burn pipeline quality natural gas to rotate an electrical generator to generate electricity. The										
							exhaust gas will exit the CTG and be routed to the heat recovery steam generator (HRSG) for										
							steam production. Steam produced by each of the two HRSGs will be routed to the steam turbine. The two CTGs and one steam turbine will be coupled to electric generators to produc	e									
							electricity for sale to the Electric Reliability Council of Texas (ERCOT) power grid. Each										
			Combined Cycle Combustion				CTG has an approximate maximum base-load electric power output of 230.7 MW. The maximum electric power output from each steam turbine is approximately 336 MW. The unit	s			APPLIES WITH OR						
*TX-0748	FGE POWER, FGE TEXAS PROJECT	420201	Turbine with DB,		200	D. 4111	may operate at reduced load to respond to changes in system power requirements and/or stability.		000	LB/GROSS MWH	WITHOUT DB; INCLUDES MSS		TON CO2/HR PER EVENT	MSS			
*1X-0/48	PROJECT	4/28/2014	HRSG and SCR	Natural Gas	/623	Btu/kWh	Stability.	Equipment specifications & work	885	LB/GROSS MWH	MSS	42	PEREVENI	MSS	0		+
	GOLDEN PASS LNG		Refrigeration					practices -									
*TX-0766	EXPORT TERMINAL	9/11/201:	Compression Turbines	natural gas	15.6	MMtpy	Six GE Frame 7 Turbines at site.	Good combustion practices and use of low carbon fuel	6.15E+05	T/YR		(0		
								Controlled by the use of low carbon									
	GATEWAY							fuels and high efficiency design. The									
VA-0319	COGENERATION 1, LLC - SMART WATER PROJECT	8/27/2013	COMBUSTION TURBINES, (2)	Natural Gas	593	MMBTU/H	Burns primarily natural gas but has the capacity to burn up to 500 hours of ultra low sulfur diesel fuel (ULSD) as backup.	heat rate shall be no greater than 8,983 Btu/kW-h (HHV, gross).	2.96E+05	T/YR	12 MO ROLLING AVG	1050	LB/MWH	12 MO AVERAGE	0		
		527201	COMBUSTION TURBINE						20,000			1000			Ĭ		
	BRUNSWICK COUNTY		GENERATORS,				Three (3) Mitsubishi M501 GAC combustion turbine generators with HRSG duct burners	Energy efficient combustion practices	s								
*VA-0321	POWER STATION	3/12/2013	(3)	Natural Gas	3442	MMBTU/H	(natural gas-fired). This entry is for both of two identical units at the facility.	and low GHG fuels.	7500	BTU/KW-H		-			0		+
			Combined Cycle				,										
*WV-0025	MOUNDSVILLE COMBINED CYCLE POWER PLANT	11/21/2014	Turbine/Duct Burner	Natural Gas	2419.61	mmBtu/Hr	Nominal 197 mW General Electric Frame 7FA.04 Turbine w/ Duct Burner - throughput denotes aggregate heat input of turbine and duct burner (HHV).	Use of GE Frame 7EA CT Low Carbon Fuel	272556	I.B/H		701	LB/MW/H		0		
		11/21/201	Combustion				many and the state of the state							İ.,			
	Kalama Energy Center Gibson County Generation,		Turbine Combustion	Natural Gas	2247	MMBtu/hr			858	LB/MW-H	12-mo rolling average	1.20E+06	tpy	12-mo rolling total			+
	LLC		Turbine Combustion	Natural Gas	417	MW			1.68E+06	T/YR		-		Not to exceed within 180 days			
	Pioneer Valley Energy Center		Turbine	Natural Gas	2016	MMBtu/hr			825	LB/MW-H				during startup			
	Pioneer Valley Energy Center		Combustion Turbine	Natural Gas	2014	MMBtu/hr			904	LB/MW-H				Not to exceed following 365 days after startup.			
			Combustion											panys after stattup.			
<u> </u>	Tenaska Partners LLC Huntington Beach Energy		Turbine Combustion	Natural Gas	3147	MMBtu/hr			876	LB/MW-H		1.88E+06	tpy				+
	Project		Turbine	Natural Gas	939	MW (net)			0.479	MTCO2/MWh							
-	York Energy Center Block 2 Shell Chemical	6/15/2015			2512.5	MMBtu/hr	firing NG with duct burner		880	LB/MW-H		1					+
	Appalachia/Petrochemicals	6/18/2015				MMBtu/hr	combustion turbines with duct burners		1000	LB/MW-H	20 4						
	Complex	6/18/2013	1	1	664	INIMISTURE	combustion turbines with duct burners	_L	1030	LD/MW-H	30-day rolling average	1					1

RBLCID	FACILITY NAME	PERMIT ISSUANCE DATE	PROCESS NAME	PRIMARY	THROUGHPUT	THROUGHPUT UNIT	PROCESS NOTES	CONTROL METHOD DESCRIPTION	EMISSION LIMIT 1	UNIT	AVG TIME CONDITION	EMISSION LIMIT 2	UNIT	AVG TIME CONDITION	STANDARAD EMISSION LIMIT	UNIT	AVG TIME CONDITION
KBLCID	FACILITY NAME	DATE	PROCESS NAME	FUEL	THROUGHPUT	THROUGHPUT UNIT	PROCESS NOTES	DESCRIPTION	LIMIT	UNIT	12-MONTH	LIMIT 2	UNIT	CONDITION	EMISSION LIMIT	UNIT	CONDITION
	KILLINGLY ENERGY		Natural Gas w/o								ROLLING (NET PLANT, GAS			(NET GAS			
CT-0161	CENTER	6/30/2017	Duct Firing	Natural Gas	296	MMBtu/hr	Throughput is for turbine only	Use of low carbon fuel	7273	BTU/KW-HR	ONLY)	81	LB/MW-HR	ONLY))	
			Combined-cycle				3-on-1 combined cycle unit. GE 7HA.02 turbines, approximately 350 MW per turbine. Total				FOR GAS			FOR ULSD			
FL-0356	OKEECHOBEE CLEAN		electric generating			l	unit generating capacity is approximately 1,600 MW. Primarily fueled with natural gas.	Use of low-emitting fuels and		I.R/MWH	OPERATION, 12-		I.R/MWH	OPERATION, 12	-		
FL-0356	ENERGY CENTER	3/9/2016	FGCTGHRSG (2	Natural gas	309	MMBtu/hr per turbine	Permitted to burn the base-load equivalent of 500 hr/yr per turbine on ULSD.	technologies	850	LB/MWH	MO ROLLING	1210	LB/MWH	MO ROLLING	1 ')	
			Combined cycle CTGs with HRSGs:				Two combined cycle natural gas fired combustion turbine generators (CTGs) with heat										
	HOLLAND BOARD OF		EUCTGHRSG10				recovery steam generators (HRSG) (EUCTGHRSG10 & EUCTGHRSG11 in FGCTGHRSG).	Energy efficiency measures and the use of	f		12-MO. ROLLING	i					
MI-0424	PUBLIC WORKS - EAST 5TH STREET		& EUCTGHRSG11)	Natural gas	550	MMBTU/H, each	The total hours for both units combined for startup and shutdown shall not exceed 635 hours per 12-month rolling time period.	a low carbon fuel (pipeline quality natura	312321	T/YR	TIME PERIOD; EACH EU.	l .)		1 .		
			EUCCT (Combined cycle CTG with					Energy efficiency measures and the use of	f		12- MO.ROLL.TIME						
MI-0427	FILER CITY STATION	11/17/2017	unfired HRSG)	Natural gas	1934.	MMBTU/H	A 1,934.7 MMBTU/H natural gas fired heavy frame industrial combustion turbine. The turbine operates in combined-cycle with an unfired heat recovery steam generator (HRSG).	a low carbon fuel (pipeline quality natura gas).	992286	T/YR	PERIOD))	
			Combined Cycle								BASED ON CONSECUTIVE						
	MIDDLESEX ENERGY		Combustion Turbine firing Natural Gas					USE OF NATURAL GAS A CLEAN			12 MONTH						
NJ-0085	CENTER, LLC	7/19/2016	without Duct Burner	Natural Gas	804	H/YR		BURNING FUEL	888	LB/MW-H	ROLLING)		-		
	TRINIDAD GENERATING		Combined Cycle														
TX-0787	FACILITY	3/1/2016	& amp; Cogeneration	natural gas	49	MW		Good Combustion Practices	937	LB/MW HR		-)		+ ()	
			Combined Cycle				2 CTGs to operate in simple cycle & combined cycle modes. 231 MW (Siemens) or 210 MW										
TX-0788	NECHES STATION	3/24/2016	& Cogeneration	natural gas	23	MW	(GE) Simple cycle operations limited to 2,500 hr/yr.	GOOD COMBUSTION PRACTICES Equipment specifications & work	924	LB/MWH)		+ '		
	PORT ARTHUR LNG		Refrigeration Compression					practices - Good combustion practices and use of									
TX-0790	EXPORT TERMINAL	2/17/2016	Turbines	natural gas	10	M TONNES/YR	Four GE Frame 7E gas turbines for refrigeration and compression at the site	low carbon fuel	504517	T/YR)		1)	
			Simple Cycle Electrical					Equipment specifications & work practices -									
	PORT ARTHUR LNG		Generation Gas					Good combustion practices and use of									
TX-0790	EXPORT TERMINAL		Turbines 15.210	natural gas	3	MW	Nine GE PGT25+G4 gas turbines for electrical generation at the site at 34 MW/turbine	low carbon, low sulfur fuel	156912	I/YK		106	LB/MW		+ '	1	
TX-0805	EAGLE MOUNTAIN STEAM	7/19/2016	Combined Cycle	notural and	46	MW		Good Combustion Practices	917	LB/MW H		l .			Ι,	,	
17-0902	ELECTRIC STATION DECORDOVA STEAM	//19/2010	& Combined Cycle	naturai gas	40.	IVI W			717	LD/MW II			,		<u> </u>	1	
TX-0810	ELECTRIC STATION (DECORDOVA STATION)	10/4/2016	and Cogeneration (>25 MW)	natural gas	21:	MW	Two turbine options: GE 7FA [210 megawatts (MW)] or Siemens 5000F (231MW)	good combustion practices and firing low carbon fuel.	966	LB/MW H					1 .	,	
	CHOCOLATE BAYOU STEAM GENERATING		Combined Cycle	NATURAL.													
TX-0817	(CBSG) STATION	2/17/2017	Cogeneration	GAS	51	MW	2 UNITS EACH 50 MW GE LM6000		1000	LB/MW H))	
	MONTGOMERY COUNTY		Combined Cycle	NATURAL				PIPELINE QUALITY NATURAL GAS,									
*TX-0834	POWER STATIOIN	3/30/2018	Turbine	GAS	263:	MMBTU/HR/UNIT	Two Mitsubishi M501GAC turbines (without fast start)	GOOD COMBUSTION PRACTICES	884	LB/MWH))	
								minimizing duration of startup / shutdowr	1								
			COMBINED					events, engaging the pollution control equipment as soon as practicable (based									
			CYCLE TURBINE					on vendor recommendations and									
*TX-0834	MONTGOMERY COUNTY POWER STATIOIN	3/30/2018	MSS REDUCED LOAD	NATURAL GAS			9 HOURS STARTUP, 1 HOUR SHUTDOWN	guarantees), and meeting the emissions limits on the MAERT	223	TON/H		l .			1 .	,	
	NRG ENERGY CENTER						500 MMBTU/hr Gas Turbine (Model: GE LM6000) rated at 52 MW and 155 MMBTU/hr				12 MONTH						
*DE-0023	DOVER DOVER	10/31/2012	UNIT 2- KD1	Natural Gas	65:	MMBTU/H	Heat Recovery Steam Generator rated at 18 MW. The unit is required to operate a certified CEMS and COMS.		1,085.0	LB/GROSS MWH	ROLLING AVERAGE 12 MONTH	0.00E+0)			,	
	GARRISON ENERGY							Fuel Usage Restriction to natural gas and			12 MONTH ROLLING						
DE-0024	CENTER	1/30/2013	Unit l	Natural Gas	226	million BTUs		low sulfur distillate fuel	1,006,304.0	TONS	AVERAGE	0.00E+0))	
	MARSHALLTOWN		Combustion turbine				two identical Siemens SGT6-5000F combined cycle turbines without duct firing, each at 2258				12-MONTH						
*IA-0107	GENERATING STATION	4/14/2014	#1 - combined cycle	natural gas	225	mmBtu/hr	mmBtu/hr generating approx. 300 MW each.		1,318,647.0	TON/YR	ROLLING ANNUAL	0.00E+0)		-)	
			Combined Cycle Refrigeration					Good combustion/operating practices and			MAXIMUM						
LA-0257	SABINE PASS LNG TERMINAL	12/6/2011	Compressor Turbines (8)	natural gas	286	MMBTU/H	GE LM2500+G4	fueled by natural gas - use GE LM2500+G4 turbines	4 872 107 0	TONS/YEAR	FROM THE FACILITY WIDE	0.00E+0)		1 .		
							This is a combined-cycle combustion turbine with a non-fired heat recovery steam generator (HRSG).		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		12-MONTH						
			Combined cycle combustion turbine								ROLLING						
*MI-0402	SUMPTER POWER PLANT	11/17/2011	w/ HRSG	Natural gas	130	MW electrical output	Natural gas-fired combustion turbine conversion to combined-cycle. Throughput is 2,237 MMBTU/H for each CTG		954.0	LB/MW-H	AVERAGE	0.00E+0)		1		
			Natural gas fueled combined cycle				Equipment is permitted as following flexible group (FG): FG-CTG1-2: Two natural gas fired CTGs with each turbine containing a heat recovery steam										
	MIDLAND COGENERATION		combustion turbine				generator (HRSG) to operate in combined cycle. The two CTGs (with HRSG) are connected	Cood contration and the cool			12-MO ROLLING						
*MI-0405	MIDLAND COGENERATION VENTURE	4/23/2013	generators (CTG) with HRSG	Natural gas	223	MMBTU/H	to one steam turbine generator. Each CTG is equipped with a dry low NOx (DLN) burner and a selective catalytic reduction (SCR) system. Natural gas fred CTG with DB for HRSG; 4 total.	Good combustion practices and energy efficiency.	995.0	LB/MW-H	12-MO. ROLLING AVERAGE	0.00E+0)				
							Technology A (4 total) is 2587 MMBTU/H design heat input each CTG.										
							Technology B (4 total) is 2688 MMBTU/H design heat input each CTG.										
							Permit was issued for either of two F Class turbine technologies with slight variations in										
							emission rates. Applicant will select one technology. Installation is two separate CTG/HRSG				12-MO ROLL						
	THETFORD GENERATING		FGCCA or FGCCB- 4 nat. gas fired CTG	1		MMBTU/H heat input,	trains driving one steam turbine electrical generator; Two 2X1 Blocks. Each CTG will be rated at 211 to 230 MW (gross) output and the station nominal generating capacity will be up				TIME PERIOD DETER EACH						
*MI-0410	STATION	7/25/2013	w/ DB for HRSG	natural gas	258	each CTG	Two Mitsubishi 2932 MMBtu/H combined cycle combustion turbines , both with 300		1,386,286.0	T/YR	MONTH	0.00E+0		-	1		
			2 Combined Cycle				MMBtu/H duct burners, with dry low NOx combustors, SCR, and catalytic oxidizer. Will										
	OREGON CLEAN ENERGY		Combustion Turbines-Siemens,			MMSCF/rolling 12-	install either 2 Siemens or 2Mitsubishi, not both (not determined). Short term limits are different with and without duct burners.	state-of-the-art high efficiency						PER ROLLING 1	,]		
*OH-0352	CENTER CENTER OF	6/18/2013	without duct burners	Natural Gas	51560	months	This process without duct burners.	combustion technology	318,404.0	LB/H		1.44E+0	T/YR	MONTHS	840	LB/MW-H	GROSS OUTPUT
							Two Mitsubishi 2932 MMBtu/H combined cycle combustion turbines , both with 300										
			2 Combined Cycle Combustion				MMBtu/H duct burners, with dry low NOx combustors, SCR, and catalytic oxidizer. Will install either 2 Siemens or 2Mitsubishi, not both (not determined).										
	1	1	Compusion	1		1	Install either 2 Siemens or 2Mitsubishi, not both (not determined). Short term limits are different with and without duct burners.	state-of-the-art high efficiency			1	1	1	PER ROLLING 1	,	1	1
*OH-0352	OREGON CLEAN ENERGY CENTER	1	Turbines-Mitsubishi, without duct burners	1		1	This process without duct burners.	combustion technology	318,404.0			1.39E+0	1	MONTHS	-1	1	SEE NOTES

		IPERMIT ISSUANCE		PRIMARY				CONTROL METHOD	IEMISSION		AVG TIME	EMISSION		AVGTIME	ISTANDARAD	$\overline{}$	IAVG TIME
RBLCID		DATE	PROCESS NAME		THROUGHPUT	THROUGHPUT UNIT	PROCESS NOTES	DESCRIPTION	LIMIT 1	UNIT	CONDITION	LIMIT 2	UNIT	CONDITION	EMISSION LIMIT	UNIT	CONDITION
				Ī			The Permittee shall select and install any of the turbine options listed below (or newer versions		Ì		Ì	Ì	i e	i	i i	†	$\overline{}$
		1					of these turbines if the										
		1					Department determines that such newer versions achieve equivalent or better emissions rates										
		1					and exhaust parameters)										
		1					General Electric 7FA (GE 7FA)										
		1	COMBINED				2. Siemens SGT6-5000F (Siemens F)				12-MONTH						
	HICKORY RUN ENERGY	1	CYCLE UNITS #1				Mitsubishi M501G (Mitsubishi G) Siemens SGT6-8000H (Siemens H)				ROLLING TOTAL FOR						
*PA-0291	STATION	4/23/2013	and #2	Natural Gas	2.4	MMCF/HR	The emissions listed are for the Siemens SGT6-8000H unit.		3,665,974.0	TDV	BOTH UNITS	0.00E+00			l ,	0	
1 A-0291	BERKS HOLLOW ENERGY	4/23/2013	Turbine, Combined	Naturai Gas		WINCITIK	The emissions fixed are for the stemens 3G10-800011 unit.		3,003,974.0		BOTHUMIS	0.002.100	1		· · · · ·	4	+
*PA-0296	ASSOC LLC/ONTELAUNEE	12/17/2013	Cycle, #1 and #2	Natural Gas	3046	MMBtu/hr	Equipped with SCR and Oxidation Catalyst		1,380,899.0	T/YR		0.00E+00)		1 .	0	
			COMBINED														
		1	CYCLE TURBINE				Natural gas-fired GE 7FA combustion turbine unit, U1-STK. and is rated at Max. based-load				30-DAY			STARTUP AND			
	THOMAS C. FERGUSON	1	GENERATOR U1-				output of 195 MW and vented to a Heat Recovery Steam Generator(HRSG) that is equipped				ROLLING			SHUTDOWN			
TX-0612	POWER PLANT	11/10/2011	STK	Natural Gas	1746	MMBTU/H	with a SCR and an Oxidation Catalyst(OC).	Good Combustion Practices install efficient turbines follow the	908,957.6	LB/H	AVERAGE	1.53E+05	LB/H	(ONLY)	-	0	
		1						turbine manufacturer's emission-									
		1						related written instructions for									
				1				maintenance activities including	1	1		1	1		1		
								prescribed maintenance intervals to					1				
								assure good combustion and efficient					1				
		1		1				operation. Compressors shall be	1	1	1	1	1	1			
								inspected and maintained according to a					1				
ATT 0 CT0	CORPUS CHRISTI		Refrigeration	l		J.	There are three LNG trains. In total there are (6) GE LM2500+ DLE turbines driving the	written maintenance plan to maintain	1465	TRUE	12-MONTH				1 .		
*TX-0679	LIQUEFACTION PLANT	2/27/2015	Compressor Turbine	natural gas	40000	hp	compressors in the ethylene refrigeration sections. The plant will consist of four identical Alstom GT24 natural gas-fired CTGs. The CTGs will	efficiency.	146,754.0	IPY	ROLLING BASIS	0.00E+00)		-	0	+
		1					burn pipeline quality natural gas to rotate an electrical generator to generate electricity. The										
		1					exhaust gas will exit the CTG and be routed to the heat recovery steam generator (HRSG) for										
		1					steam production. Steam produced by each of the two HRSGs will be routed to the steam										
		1					turbine. The two CTGs and one steam turbine will be coupled to electric generators to produce										
		1					electricity for sale to the Electric Reliability Council of Texas (ERCOT) power grid. Each										
		1	Combined Cycle				CTG has an approximate maximum base-load electric power output of 230.7 MW. The				APPLIES WITH						
		1	Combustion Turbine				maximum electric power output from each steam turbine is approximately 336 MW. The units				OR WITHOUT						
	FGE POWER, FGE TEXAS PROJECT	4/28/2014	with DB, HRSG and				may operate at reduced load to respond to changes in system power requirements and/or stability			LB CO2/MWH, GROSS	DB; INCLUDES MSS		TON CO2/HR PER EVENT	MSS		_	
*TX-0748	PROJECT	4/28/2014	SCR	Natural Gas	7625	Btu/kWh	stability.	Equipment specifications & work	889.0	GROSS	MSS	4.80E+0	PER EVENT	MSS	+	1	+
		1	Refrigeration					practices -									
	GOLDEN PASS LNG	1	Compression					Good combustion practices and use of									
*TX-0766	EXPORT TERMINAL	9/11/2015	Turbines	natural gas	15.6	MMtpy	Six GE Frame 7 Turbines at site.	low carbon fuel	614,533.0	TPY		0.00E+00)		(0	
								Controlled by the use of low carbon fuels									
	GATEWAY	1						and high efficiency design. The heat rate									
	COGENERATION 1, LLC -		COMBUSTION				Burns primarily natural gas but has the capacity to burn up to 500 hours of ultra low sulfur	shall be no greater than 8,983 Btu/kW-h			12 MO ROLLING			12 MO	I .		
VA-0319	SMART WATER PROJECT	8/27/2012	TURBINES, (2)	Natural Gas	593	MMBTU/H	diesel fuel (ULSD) as backup. Four GE 7FA combined cycle turbines, dry low NOx burners and selective catalytic reduction.	(HHV, gross).	295,961.0	I/YR	AVG	1.05E+0;	LB/MWH	AVERAGE	-	J .	+
		1	COMBUSTION				These limits are for each of the 4 turbines individually, while operating with the duct burners										
	BRUNSWICK COUNTY		TURBINE				on. This permit is a modification to RBLC OH-0252 to remove hourly restrictions on duct	Energy efficient combustion practices and					1				
*VA-0321	POWER STATION	3/12/2013	GENERATORS, (3)	Natural Gas	3442	MMBTU/H	burners.	low GHG fuels.	7,500.0	BTU/KW-H			0		1 0	0	
	Footprint Power Salem Harbor													365 day rolling			
	Development LP		Combustion Turbine	Natural Gas	346	MW			825.0	lb/MW-hr	Duct Burners Off	8.95E+02	lb/MW-hr	average	1		
	L			l					l .	L	12-mo rolling	l	.1	I	.1		
	Kalama Energy Center Gibson County Generation,		Combustion Turbine	Natural Gas	2247	MMBtu/hr			858.0	lb/Mwhe	average	1.20E+0	tpy	12-mo rolling tota	4	+	+
	LLC		Combustion Turbine	Natural Gas	415	MW			1,679,459.0	tow		1	1		1		
	LLC		Comoustion Turbine	ivatural Gas	41/	IVI VV			1,079,439.0	upy				Not to exceed		+	+
		1		1					1	1	1	1	1	within 180 days			
	Pioneer Valley Energy Center		Combustion Turbine	Natural Gas	2016	MMBtu/hr			825.0	lb/MWh				during startup			
											1		1	1			
													1	Not to exceed			
	L	1	L	l		l				L	1	1	1	following 365 day	S		
	Pioneer Valley Energy Center		Combustion Turbine	Natural Gas	2016	MMBtu/hr			895.0	lb/MWh	+	 		after startup.	+	+	+
	Russell City Energy Company,	1	Combustion Turbine	Natural Gas	2029 6	MMBtu/hr			242.0	metric tons/hr	1	5 90E±0	metric tons/day	1			
	Russell City Energy Company,		Combustion Turbine	ivaturai Gas	2038.6	INTRACTOR			242.0	metric tons/iif	 	3.80E±0;	metric tons/day	+	+	+	+
	ILC	1	Combustion Turbine	Natural Gas	2038 6	MMBtu/hr			7 730 0	Btu/kWhr	1	1	1	1			
				- Lunin Gus	2038.0				7,730.0		1	1	1	1	1	1	
	Tenaska Partners LLC		Combustion Turbine	Natural Gas	3147	MMBtu/hr			876.0	lb/MWh		1.88E+0e	5 tpy				
	Huntington Beach Energy																
	Project	,,,,,,,,	Combustion Turbine	Natural Gas		MW (net)	[MTCO2/MWh	ļ	1	1		1	+	+
	York Energy Center Block 2	6/15/2015	1		2512.5	MMBtu/hr	firing NG without duct burner		880.0	lb/MW-hr			1				